• Title/Summary/Keyword: maximum power point tracking(MPPT)

Search Result 382, Processing Time 0.038 seconds

ANN-based Maximum Power Point Tracking of PV System using Fuzzy Controller (퍼지 제어기를 이용한 PV 시스템의 ANN 기반 최대전력점 추적)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • A maximum power point tracking (MPPT) algorithm using fuzzy controller was considered. MPPT method was implemented based on the voltage and reference PV voltage value was obtained from Artificial Neural Network (ANN)-model of PV modules. Therefore, measuring only the PV module voltage is adequate for MPPT operation. Fuzzy controller is used to directly control dc-dc buck converter. The simulation results have been used to verify the effectiveness of the algorithm. The proposed method is compared with conventional PO(perturbation & observation), IC(Incremental Conductance) method. The nonlinearity and adaptiveness of fuzzy controller provided good performance under parameter variations such as solar irradiation.

The MPPT Control oh Photovoltaic System using FVSS-PO Method (FVSS-PO를 이용한 태양광 발전시스템의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.20-26
    • /
    • 2013
  • This paper proposes the maximum power point tracking(MPPT) control of photovoltaic system using fuzzy based variable step size perturbation & observation(FVSS-PO) method. Conventional PO and incremental conductance(IC)MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, the fixed step size can't be satisfying both the tracking speed and the tracking accuracy. This paper proposes FVSS-PO MPPT algorithm that adjusts automatically step size of PO by fuzzy control according to operating conditions. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO MPPT algorithm.

The Realization of MPPT Controller Using Fuzzy Controller for Photovoltaic System (퍼지제어기를 이용한 태양광발전시스템의 MPPT 제어기 구현)

  • Cho, Geum-Bae;Choi, Yeon-Ok;Baek, Hyung-Lae
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2004
  • PV system is easy to operate and maintain than the other power generating system since it generally contains no moving parts, operates silently and requires very little maintenance. A solar cell generates DC power from sunlight whose power is different at any instance according to condition of irradiation and temperature variables. In order to improve the system utility factor and efficiency of energy conversion, it is desirable to operate the PV system at maximum power point of solar cell under different condition This paper describes the experimental results of the PV system contain solar modules and a DC-DC converter(boost type chopper) using fuzzy controller. The experimental results show that the PV system always operates at maximum power point of solar cells having stabilized output voltage waveform with relatively small ripple component.

Humpback Whale Assisted Hybrid Maximum Power Point Tracking Algorithm for Partially Shaded Solar Photovoltaic Systems

  • Premkumar, Manoharan;Sumithira, Rameshkumar
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1805-1818
    • /
    • 2018
  • This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm combining a Whale Optimization Algorithm (WOA) and the conventional Perturb & Observation (P&O) to track/extract the highest amount of power from a solar photovoltaic (SPV) system working under partial shading conditions (PSCs). The proposed hybrid algorithm is based on a WOA which predicts the initial global peak (GP) and is followed by P&O in the final stage to achieve a quicker convergence to a GP. Thus, this hybrid algorithm overcomes the computational burden encountered in a standalone WOA, grey wolf optimization (GWO) and hybrid GWO reported in the literature. The conventional algorithm searches for the maximum power point (MPP) in the predicted region by the WOA. The proposed MPPT technique is modelled and simulated using MATLAB/Simulink for simulating an environment to check its effectiveness in accurately tracking the MPP during the GP region. This hybrid algorithm is compared with a standalone WOA, GWO and hybrid GWO. From the simulating results, it is shown that the proposed algorithm offers high tracking performance and that it increases the output power level of a SPV system under partial shading. The algorithm also verified experimentally on various PSCs.

A Low-voltage Vibrational Energy Harvesting Circuit using a High-performance AC-DC converter (고성능 AC-DC 변환기를 이용한 저전압 진동에너지 하베스팅 회로)

  • Kong, Hyo-sang;Han, Jang-ho;Choi, Jin-uk;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.533-536
    • /
    • 2016
  • This paper describes a vibrational energy harvesting circuit with MPPT control. A high-performance AC-DC converter of which the efficiency is improved by using body-bias technique and bulk-driven technique is proposed and applied for the vibrational energy harvesting circuit design. MPPT (Maximum Power Point Tracking) control function is implemented using the linear relationship between the open-circuit voltage of a vibrational device and its MPP voltage. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a vibrational device, makes the reference voltages using sampled voltage and delivers the maximum available power to load. The proposed circuit is designed with a $0.35{\mu}m$ CMOS process, and the chip area is $1.21mm{\times}0.98mm$.

  • PDF

Study on maximum power point tracking method for PV system under varying irradiance (일사량 변동에 대응한 태양광발전시스템의 최대전력 추종기법 연구)

  • Yu, Byung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5310-5316
    • /
    • 2013
  • Maximum Power Point Tracking (MPPT) method for Photovoltaic (PV) system is implemented in PV inveter and it generate the maximum electric power from PV cell. MPPT method has been studied to have high efficiency and high tracking speed. However, these studies are basically focused on the performance under fixed irradiance condition. Based on the typical Perturbation and Observation (P&O) method, this paper presents the research results on modified P&O method to have a better performance under varying irradiance condition. The modified P&O method can have a better performance under varying irradiance condition because the additional measurements during the MPPT control period are conducted. The proposed MPPT method is verified by using 250kW PV inverter under linearly varying irradiance condition according to EN 50530.

A Study of MPPT Algorithm for PV PCS (태양광발전용 PCS의 MPPT 제어알고리즘 고찰)

  • Jung, Young-Seok;Yu, Gwon-Jong;So, Jeong-Hun;Choi, Ju-Yeop;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1359-1361
    • /
    • 2003
  • As the maximum power operating point(MPOP) of Photovoltaic(PV) power generation systems changes with changing atmospheric conditions such as solar radiation and temperature, an important consideration. In the design of efficient PV system is to track the MPOP correctly. Many maximum power point tracking(MPPT) techniques have been considered in the past, however, techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This pager proposed a new MPPT algorithm based on perturb & observe(P&O) algorithm with experiment. The results shows that the new P&O algorithm has successfully tracked the MPOP, even in case of rapidly changing atmospheric conditions, and has higher efficiency than ordinary algorithms.

  • PDF

Optimal Current Detect MPPT Control of PV System for Robust with Environment Changing (환경변화에 강인한 태양광 발전의 최적전류 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.47-58
    • /
    • 2011
  • This paper proposes the optimal current detect(OCD) maximum power point tracking(MPPT) control of photovoltaic(PV) system for robust with environment changing. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and temperature. Conventional MPPT control methods are tracked the maximum power point by constant incremental value. So these methods are slow the response speed and generated the vibration in steady state and cannot track the MPP in environment condition changing. And power loss is generated because of the self-excitation vibration in MPP region. To solve this problem, this paper proposes the novel control algorithm. Proposed algorithm is detected the optimal current in two control region using the output power and current curve. Detected current is used the converter switching for tracking the MPP. Proposed algorithm is compared output power error to conventional algorithm with radiation and temperature changing. In addition, the validity of the algorithm is proved through the output error response characteristics.

Enhanced Simulated Annealing-based Global MPPT for Different PV Systems in Mismatched Conditions

  • Wang, Feng;Zhu, Tianhua;Zhuo, Fang;Yi, Hao;Fan, Yusen
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1327-1337
    • /
    • 2017
  • Photovoltaic (PV) systems are influenced by disproportionate impacts on energy production caused by frequent mismatch cases. The occurrence of multiple maximum power points (MPPs) adds complexity to the tracking process in various PV systems. However, current maximum-power point tracking (MPPT) techniques exhibit limited performance. This paper introduces an enhanced simulated annealing (ESA)-based GMPPT technique against multiple MPP issues in P-V curve with different PV system structures. The proposed technique not only distinguishes global and local MPPs but also performs rapid convergence speed and high tracking accuracy of irradiance changing and restart capability detection. Moreover, the proposed global maximum power tracking algorithm can be applied in the central converter of DMPPT and hybrid PV system to meet various application scenarios. Its effectiveness is verified by simulation and test results.

Development of Algorithm for Maximum Power Point Tracking of PV system (PV 시스템의 최대출력점 추정을 위한 알고리즘 개발)

  • Park, Ki-Tae;Ko, Jae-Sub;Choi, Jung-Sik;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.316-321
    • /
    • 2007
  • This paper is proposed a novel method to approximate the maximum power for a photovoltaic inverter system and tracking method. It is designed for power systems application and utilities. The proposed Maximum Power Point Tracking(MPPT) control has the advantage to provide a new simple way to approximate the optimal or rated voltage, the optimal or rated current and maximum power rating produced by a solar panel and the photovoltaic inverter. And this straightforward method will be named linear reoriented coordinates method(LRCM) with the advantage that Pmax and $V_{op}$ can be approximated using the satre variable as the dynamic model without using complicate approximations or Taylor series. Furthermore tracking method is improved over 50% photovoltaic efficiency. This paper is proposed MPPT using LRMC and tracking method using weather condition of domestic moderate program technique. This paper is proposed the experimental results to verify the effectiveness of the new methods.

  • PDF