• 제목/요약/키워드: maximum power operating point

검색결과 124건 처리시간 0.028초

실제 날씨를 고려한 PV-MPPT 제어기의 최적 주기와 변량전압 (Optimum Control Period and Perturbation Voltage for PV-MPPT Controller Considering Real Wether Condition)

  • 류단비;김용중;김효성
    • 전력전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2020
  • Solar power generation systems require maximum power point tracking (MPPT) control to operate PV panels at their maximum power point (MPP). Most conventional MPPT algorithms are based on the slope-tracking concept. A typical slope-tracking method is the perturb and observe (P&O) algorithm. The P&O algorithm measures the current and voltage of a PV panel to find the operating point of the voltage at which the calculated power is maximized. However, the measurement error of the sensor causes irregularity in the calculation of the generated power and voltage control. This irregularity leads to the problem of not finding the correct MPP operating point. In this work, the power output of a PV panel based on the P&O algorithm is simulated by considering the insolation profiles from typical clear and cloudy weather conditions and the errors of current and voltage sensors. Simulation analysis suggests the optimal control period and perturbation voltage of MPPT to maximize its target efficiency under real weather conditions with sensor tolerance.

Innovative Decision Reference Based Algorithm for Photovoltaic Maximum Power Point Tracking

  • Mehrnami, Siamak;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.528-537
    • /
    • 2010
  • A novel decision reference based method for the maximum power point tracking (MPPT) of PV arrays is presented in this paper. The proposed decision reference was derived from a simplified solar cell model. This method solves the problems of conventional MPPT algorithms, such as oscillation of the operating point at the steady state and confusion under rapidly changing insolation. It is shown by simulation and experimental results that the method properly tracks a rapidly changing insolation profile. The signal to noise ratio (SNR) of the new decision reference is also higher than those of conventional P&O and INC methods. An updating subroutine was included in the proposed MPPT algorithm to compensate for temperature and aging effects.

N-IC MPPT방법을 이용한 태양광 발전시스템의 성능개선 (Improving the performance of PV system using the N-IC MPPT methods)

  • 서태영;고재섭;강성민;김유탁;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.958-959
    • /
    • 2015
  • This paper proposes adaptive incremental conductance(A-IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. Conventional Perturbation & Observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, this paper proposes N-IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve tracking speed and accuracy, when operating point is far from maximum power point(MPP), step size uses maximum value and when operating point is near from MPP, step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional IC MPPT algorithm.

  • PDF

태양광 발전 시스템에서의 벅 컨버터 모델링과 해석 (Modeling and Analysis of The Buck Converter in Photovoltaic Power Conditioning System)

  • 정승환;최익;최주엽
    • 한국전자통신학회논문지
    • /
    • 제8권7호
    • /
    • pp.1039-1048
    • /
    • 2013
  • 일반적으로 벅 컨버터 제어기는 컨버터의 출력 전압을 제어하도록 설계하지만, 태양광발전시스템에서의 벅 컨버터 제어기는 설계 방식을 달리 구분해야 한다. 본 논문에서는 MPPT(Maximum Power Point Tracking)을 위하여 벅 컨버터의 입력 전압(태양광전지의 출력 전압)을 제어한다고 가정하였다. 또한, 컨버터의 입력 전압을 제어하기 위한 새로운 벅 컨버터 모델을 제시한다. 이 컨버터 모델은 최대전력점(MPP)에서 동작점을 두어 선형화한 태양광전지의 모델을 포함하며, 모델의 타당성을 검증하기 위하여 대신호와 소신호로 나누어 분석한다. 또한 일반적인 선형제어기를 설계하였을 때, 제어 가능성을 분석하여 검증한다.

태양전지 온도 센싱만을 통한 태양광 발전시스템의 최적 운전전압에 관한 연구 (A Study on the Optimal Voltage for MPPT Obtained by only Surface's Temperature of Solar Cell)

  • Minwon Park;In-Keun Yi
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.269-275
    • /
    • 2004
  • Photovoltaic(PV) system has been studied and watched with keen interest due to a clean and renewable power source. But, the output power of PV system is not only unstable but uncontrollable, because the maximum power point tracking (MPPT) of PV system is still hard with the tracking failure under the sudden fluctuation of irradiance. Authors suggest that the optimal voltage for MPPT be obtained by only solar cell temperature. Having an eye on that the optimal voltage point of solar cell is in proportion to its panel temperature, with operating the power converter whose operating point keeps its input voltage to the optimal voltage imagined by the surface's temperature of PV panel, the maximum power point becomes tenderly possible to be tracked. In order to confirm the availability of the proposed control scheme. And both control methods are simulated not only on the various angle of sampling time of switching control, but also with the real field weather condition. As the results of that, the conversion efficiency between PV panel and converter of the proposed control scheme was much better than that of the power comparison MPPT control, and what is better, the output voltage of PV panel was extremely in stable when the optimal voltage for MPPT is obtained by only solar cell temperature.

Sensor-less Approaches for Maximum Photovoltaic Power Tracking Control

  • Matsui Mikihiko;Kitano Tatsuya
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.626-630
    • /
    • 2001
  • MPPT (maximum power point tracking) control is very important for the practical PV (photovoltaic) systems to maintain efficient power generating conditions irrespective of the deviation in the PV array insolation or/and temperature conditions. Although a plenty of researches have been done so far, most of them are too costly because of being too dependant on expensive sensors for measuring photovoltaic power and micro-processors for achieving elaborate and complicated control strategies. From this point of view, authors have been researching on sensor-less approaches for MPPT control, and have proposed two types of new control schemes 'Power Equilibrium Scheme' and 'Limit Cycle Scheme'. This paper summarises these two schemes with focussing on their :- operating principles and some results of simulation and experiments.

  • PDF

Maximum Power Point Tracking Control Employing Fibonacci Search Algorithm for Photovoltaic Power Generation System

  • Miyatake Masafumi;Kouno Tooru;Nakano Motomu
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.622-625
    • /
    • 2001
  • Photovoltaic generation systems need MPPT (Maximum Power Point Tracking) control because the output power depends on the operating voltage and current. Therefore, many researchers propose various types of MPPT control methods. A new MPPT control scheme is proposed in this paper in order to realize higher efficiency with simple calculation. The line search algorithm with fibonacci sequence which is one of the optimizing method is employed for the MPPT. The line search method is modified for real-time operation. The method is verified by simulations and experiments. It is concluded that the scheme can respond fast variation of irradiance.

  • PDF

태양전지 모의 전원을 이용한 MPPT 알고리즘의 비교 고찰 (Comparative Study of Maximum Power Point Tracking Algorithms Using PV Array Simulator)

  • 정영석;소정훈;유권종;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 추계학술대회 논문집
    • /
    • pp.234-237
    • /
    • 2003
  • As the maximum power operating point (MPOP) of photovoltaic (PV) power systems changes with changing atmospheric conditions, the efficiency of maximum power point tracking (MPPT) is important in PV power systems. Many MPPT techniques have been considered in the past, but techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. In this paper, we proposed a new MPPT control method called improved perturb and observe method (ImP&O), anda simple voltage and current characteristic equation of a PV array for PV array simulator. Experimental results verify the accuracy and excellent performance of the proposed MPPT method. ImP&O algorithm is very simple, and has successful tracked the MPOP, even in case of rapidly changing atmospheric conditions.

  • PDF

태양광 시스템에서의 새로운 MPPT 알고리즘 제안 (A Suggestion of New MPPT Algorithm in the PV system)

  • 이경수;정영석;소정훈;유권종;최재호
    • 전력전자학회논문지
    • /
    • 제10권1호
    • /
    • pp.21-28
    • /
    • 2005
  • 일사량과 온도에 의해 태양광 어레이의 최대전력동작점(MPOP)이 결정되며 태양광발전시스템에서 중요하게 고려해야 할 사항 중 하나는 최대전력동작점을 정확하게 추종하도록 하는 것이다. 과거부터 여러 최대전력추종제어기법(MPPT)들이 사용되어 왔지만, 마이크로프로세서를 이용한 최대전력추종제어기법은 다른 태양광 어레이와의 호환성, 적응성 측면에서 유리하다. 이 논문에서는 기존의 P&O, IncCond 알고리즘에 대한 분석과 새로운 히스테리시스밴드 변동 기법을 제안한다. 새로 제안된 제어기법의 우수성을 나타내주기 위하여 저자는 3가지의 기준을 만들어서 각 기법을 비교 및 분석하였다. 첫째로, 정상상태에서의 각 기법의 파형을 살펴보았고, 다음으로 일사량을 급변하였을 경우의 파형을 나타내었고, 마지막으로 일사량에 따른 MPPT 추종효율을 보였다. MPPT 시뮬레이션과 실험은 부스트 컨버터에서 수행하였다.

Research and Experimental Implementation of a CV-FOINC Algorithm Using MPPT for PV Power System

  • Arulmurugan, R.;Venkatesan, T.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1389-1399
    • /
    • 2015
  • This research suggests maximum power point tracking (MPPT) for the solar photovoltaic (PV) power scheme using a new constant voltage (CV) fractional order incremental conductance (FOINC) algorithm. The PV panel has low transformation efficiency and power output of PV panel depends on the change in weather conditions. Possible extracting power can be raised to a battery load utilizing a MPPT algorithm. Among all the MPPT strategies, the incremental conductance (INC) algorithm is mostly employed due to easy implementation, less fluctuations and faster tracking, which is not only has the merits of INC, fractional order can deliver a dynamic mathematical modelling to define non-linear physiognomies. CV-FOINC variation as dynamic variable is exploited to regulate the PV power toward the peak operating point. For a lesser scale photovoltaic conversion scheme, the suggested technique is validated by simulation with dissimilar operating conditions. Contributions are made in numerous aspects of the entire system, including new control algorithm design, system simulation, converter design, programming into simulation environment and experimental setup. The results confirm that the small tracking period and practicality in tracking of photovoltaic array.