• Title/Summary/Keyword: maximum moment

Search Result 908, Processing Time 0.029 seconds

Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단거동 예측)

  • Kim Sang-Woo;Chai Hyee-Dae;Lee Jung-Yoon;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.435-444
    • /
    • 2005
  • This paper predicted the shear behavior of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered the effects of bending moment and axial force. Nine columns with various shear span- to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Fine linear displacement transducers (LVDT) were attached to a side of the column near the shear critical region to measure the curvature, the longitudinal and transverse axial deformations, and the shear deformation of the column. The test was terminated when the value of the applied load dropped to about $85\%$ of the maximum-recorded load in the post-peak descending branch. All the columns were failed in shear before yielding of the flexural steel. The shear strength and the stiffness of the columns increased, as the axial force increased and the shear span-to-depth ratio decreased. Shear stress-shear strain and shear stress-strain of shear reinforcement curves obtained from TATM were agreed well with the test results in comparison to other truss models (MCFT, RA-STM, and FA-STM).

Ductility and ductility reduction factor for MDOF systems

  • Reyes-Salazar, Alfredo
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.369-385
    • /
    • 2002
  • Ductility capacity is comprehensively studied for steel moment-resisting frames. Local, story and global ductility are being considered. An appropriate measure of global ductility is suggested. A time domain nonlinear seismic response algorithm is used to evaluate several definitions of ductility. It is observed that for one-story structures, resembling a single degree of freedom (SDOF) system, all definitions of global ductility seem to give reasonable values. However, for complex structures it may give unreasonable values. It indicates that using SDOF systems to estimate the ductility capacity may be a very crude approximation. For multi degree of freedom (MDOF) systems some definitions may not be appropriate, even though they are used in the profession. Results also indicate that the structural global ductility of 4, commonly used for moment-resisting steel frames, cannot be justified based on this study. The ductility of MDOF structural systems and the corresponding equivalent SDOF systems is studied. The global ductility values are very different for the two representations. The ductility reduction factor $F_{\mu}$ is also estimated. For a given frame, the values of the $F_{\mu}$ parameter significantly vary from one earthquake to another, even though the maximum deformation in terms of the interstory displacement is roughly the same for all earthquakes. This is because the $F_{\mu}$ values depend on the amount of dissipated energy, which in turn depends on the plastic mechanism, formed in the frames as well as on the loading, unloading and reloading process at plastic hinges. Based on the results of this study, the Newmark and Hall procedure to relate the ductility reduction factor and the ductility parameter cannot be justified. The reason for this is that SDOF systems were used to model real frames in these studies. Higher mode effects were neglected and energy dissipation was not explicitly considered. In addition, it is not possible to observe the formation of a collapse mechanism in the equivalent SDOF systems. Therefore, the ductility parameter and the force reduction factor should be estimated by using the MDOF representation.

Demands and distribution of hysteretic energy in moment resistant self-centering steel frames

  • Lopez-Barraza, Arturo;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Bojorquez, Eden
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1155-1171
    • /
    • 2016
  • Post-tensioned (PT) steel moment resisting frames (MRFs) with semi-rigid connections (SRC) can be used to control the hysteretic energy demands and to reduce the maximum inter-story drift (${\gamma}$). In this study the seismic behavior of steel MRFs with PT connections is estimated by incremental nonlinear dynamic analysis in terms of dissipated hysteretic energy ($E_H$) demands. For this aim, five PT steel MRFs are subjected to 30 long duration earthquake ground motions recorded on soft soil sites. To assess the energy dissipated in the frames with PT connections, a new expression is proposed for the hysteretic behavior of semi-rigid connections validated by experimental tests. The performance was estimated not only for the global $E_H$ demands in the steel frames; but also for, the distribution and demands of hysteretic energy in beams, columns and connections considering several levels of deformation. The results show that $E_H$ varies with ${\gamma}$, and that most of $E_H$ is dissipated by the connections. It is observed in all the cases a log-normal distribution of $E_H$ through the building height. The largest demand of $E_H$ occurs between 0.25 and 0.5 of the height. Finally, an equation is proposed to calculate the distribution of $E_H$ in terms of the normalized height of the stories (h/H) and the inter-story drift.

Interaction analysis of a building frame supported on pile groups

  • Dode, P.A.;Chore, H.S.;Agrawal, D.K.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.305-318
    • /
    • 2014
  • The study deals with the physical modeling of a typical building frame resting on pile foundation and embedded in cohesive soil mass using complete three-dimensional finite element analysis. Two different pile groups comprising four piles ($2{\times}2$) and nine piles ($3{\times}3$) are considered. Further, three different pile diameters along with the various pile spacings are considered. The elements of the superstructure frame and those of the pile foundation are descretized using twenty-node isoparametric continuum elements. The interface between the pile and pile and soil is idealized using sixteen-node isoparametric surface elements. The current study is an improved version of finite element modeling for the soil elements compared to the one reported in the literature (Chore and Ingle 2008). The soil elements are discretized using eight-, nine- and twelve-node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in the elastic state at all the time. The interaction analysis is carried out using sub-structure approach in the parametric study. The total stress analysis is carried out considering the immediate behaviour of the soil. The effect of various parameters of the pile foundation such as spacing in a group and number piles in a group, along with pile diameter, is evaluated on the response of superstructure. The response includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement in the range of 58 -152% and increase the absolute maximum positive and negative moments in the column in the range of 14-15% and 26-28%, respectively. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and the soil considered in the present study.

Prediction of the flexural overstrength factor for steel beams using artificial neural network

  • Guneyisi, Esra Mete;D'niell, Mario;Landolfo, Raffaele;Mermerdas, Kasim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.215-236
    • /
    • 2014
  • The flexural behaviour of steel beams significantly affects the structural performance of the steel frame structures. In particular, the flexural overstrength (namely the ratio between the maximum bending moment and the plastic bending strength) that steel beams may experience is the key parameter affecting the seismic design of non-dissipative members in moment resisting frames. The aim of this study is to present a new formulation of flexural overstrength factor for steel beams by means of artificial neural network (NN). To achieve this purpose, a total of 141 experimental data samples from available literature have been collected in order to cover different cross-sectional typologies, namely I-H sections, rectangular and square hollow sections (RHS-SHS). Thus, two different data sets for I-H and RHS-SHS steel beams were formed. Nine critical prediction parameters were selected for the former while eight parameters were considered for the latter. These input variables used for the development of the prediction models are representative of the geometric properties of the sections, the mechanical properties of the material and the shear length of the steel beams. The prediction performance of the proposed NN model was also compared with the results obtained using an existing formulation derived from the gene expression modeling. The analysis of the results indicated that the proposed formulation provided a more reliable and accurate prediction capability of beam overstrength.

Stability Evaluation of Bump Crossing and Loading of Proto-type Mini-Forwarder by Computer Simulation (컴퓨터 시뮬레이션을 이용한 소형 임내차 시작기의 장애물 통과 및 적재 안정성 평가)

  • Park H. K.;Kim K. U.;Shim S. B.;Kim J. W.;Park M. S.;Song T. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.366-372
    • /
    • 2005
  • The objective of this study was to evaluate the bump crossing and loading stability of a proto-type mini-forwarder under development. The evaluation was performed by computer simulation using a multi-body dynamic analysis program, Recur- Dyn 5.21. The proto-type was modeled and its properties such as mass, mass center, and mass moment of inertia were determined using 3D CAD modeler, Solid Edge 8.0. The $\%$ errors of masses, mass center, mass moment of inertia, and vertical motion of the model were within less than $10\%$ and the model's behavior agreed relatively well with those of the proto-type when traversing over a rectangular bump. Using the validated model, bump crossing of the proto-type was simulated and the loading limit was determined. It was found that effects of the shapes of bump on the bump crossing performance was insignificant within the practical heights of bumps. Stability of bump crossing increased with loading. However, loading of longer logs than 2.7 m made the crossing unstable because the ends of logs contacted ground when traversing over the bump. The maximum loading capacity of the proto-type was estimated to be 7.8 kN of 2.7 m long logs.

Study on performance test of orchard tractor power transmission systems

  • Sung, Nam-Seok;Chang, Dong-Il;Huh, Yun-Kun;Chung, Sun-Ok;Cho, Jong-Seung;Ha, Jong-Kyou
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.237-241
    • /
    • 2013
  • This study started to export an orchard tractor to Europe under the situations that R&D activities for orchard tractor were marginal and even it was not produced. The R&D for orchard tractor has been progressed and the most of it is accomplishing the goal. In this study, the durability of clutch friction part was tested for F/R clutch and moment of inertia of PTO clutch, and it was compared with the design criteria of transmission of tractor. According to the results of inertia test of F/R clutch, hydraulic pressures of clutch satisfied $1,961.33{\pm}196.13kPa$ of design criteria, and the variations of torque for forward and reverse operation were relatively constant. Therefore, it was found that the durability of clutch friction part was stable and reliable. Test results showed that the main hydraulic pressures were maintained $1,961.33{\pm}196.13kPa$ during the tests of moment of inertia of PTO clutch, and when it was operated, the hydraulic pressures were reached $1,961.33{\pm}196.13kPa$. Therefore, it was found that the hydraulic pressures of PTO satisfied the design criteria. By the results that the time of the hydraulic pressures of PTO reaching main hydraulic pressure, and that of torque values restoring to the original was same as the time of the first gear of PTO reaching the maximum rotational speed, it was found that PTO could transfer power to attachments as it was designed.

Experimental study on the Behavior CFT Column to H-Beam Endplate Connections with Penetrated High Strength Bolts (II) (관통형 고력볼트를 사용한 엔드플레이트형식 콘크리트 충전 각형강관 기둥.H형강 보 접합부의 거동에 관한 실험적 연구 (II))

  • Kim, Jae Keon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.109-116
    • /
    • 1999
  • This paper presents an experimental study on the behavior of CFT Column to H-Beam Endplate Connections with penetrated H/T bolts under monotonic loading. The object of this study is to estimate accurately the effect about the thickness of endplate and the arrangement of H/T bolts which was not got a grip on the results reported in the previous paper. Main parameters are the thickness of endplates (12mm, 16mm) and the arrangemement of H/T bolts (EP1, EP2, EP3 Type). The experimental results compared and analysed. 1) The specimens were classified by Bjorhovde's and EC3's method. 2) A formula to predict the ultimate moment of connection was derived based on the T-stub model, and theoretical value $(_tM_u)$ computed by the formula corresponded to the experimental value $(_eM_u)$.

  • PDF

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.