• Title/Summary/Keyword: maximum moment

Search Result 908, Processing Time 0.031 seconds

Soil -structure interaction analysis of a building frame supported on piled raft

  • Chore, H.S.;Siddiqui, M.J.
    • Coupled systems mechanics
    • /
    • v.5 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • The study deals with physical modeling of a typical building frame resting on pile raft foundation and embedded in cohesive soil mass using finite element based software ETABS. Both- the elements of superstructure and substructure (i.e., foundation) including soil is assumed to remain in elastic state at all the time. The raft is modelled as a thin plate and the pile and soils are treated as interactive springs. Both- the resistance of the piles as well as that of raft base - are incorporated into the model. Interactions between raft-soil-pile are computed. The proposed method makes it possible to solve the problems of uniformly and large non-uniformly arranged piled rafts in a time saving way using finite element based software ETABS. The effect of the various parameters of the pile raft foundation such as thickness of raft and pile diameter is evaluated on the response of superstructure. The response included the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement and increase the absolute maximum positive and negative moments. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in the present study.

Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top

  • Zhou, Chaoyang;Ren, Da;Cheng, Xiaonian
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.135-143
    • /
    • 2017
  • To upgrade shear performance of reinforced concrete (RC) beams, and particularly of the segments under negative moment within continuous T-section beams, a series of original schemes has been proposed using carbon fibre-reinforced polymer (CFRP) U-shaped strips for shear-strengthening. The current work focuses on one of them, in which CFRP U-strips are wound around steel bars against the top of the flange of a T-beam and then spliced on its bottom face in addition to being bonded onto its sides. The test results showed that the proposed scheme successfully provided reliable anchorage for U-strips and prevented premature onset of shear failure due to FRP debonding. The governing shear mode of failure changed from peeling of CFRP to its fracture or crushing of concrete. The strengthened specimens displayed an average increase of about 60% in shear capacity over the unstrengthened control one. The specimen with a relatively high ratio and uniform distribution of CFRP reinforcement had a maximum increase of nearly 75% in strength as well as significantly improved ductility. The formulas by various codes or guidelines exhibited different accuracy in estimating FRP contribution to shear resistance of the segments that are subjected to negative moment and strengthened with well-anchored FRP U-strips within continuous T-beams. Further investigation is necessary to find a suitable approach to predicting load-carrying capacity of continuous beams shear strengthened in this way.

Effects of Partially Earth Anchored Cable System on Safety Improvement for a Long-span Cable-stayed Bridge under Seismic and Wind Load (장경간 사장교에 적용된 일부타정식 케이블 시스템의 지진하중과 풍하중 안전성 향상 효과 분석)

  • Won, Jeong-Hun;Lee, Hyung Do
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.97-103
    • /
    • 2016
  • This study investigates effects of partially earth anchored cable system on the structural safety for a long-span cable-stayed bridge under dynamic loads such as seismic and wind load. For a three span cable-stayed bridge with a main span length of 810 m, two models are analyzed and compared; one is a bridge model with a self anchored cable system, the other is a bridge model with a partially earth anchored cable system. By performing multi-mode spectrum analysis for a prescribed seismic load and multi-mode buffeting analysis for a fluctuating wind component, the structural response of two models are compared. From results, the partially earth anchored cable system reduce the maximum pylon moment by 66% since earth anchored cables affect the natural frequencies of girder vertical modes and pylon longitudinal modes. In addition, the girder axial forces are decreased, specially the decrement of the axial force is large in seismic load, while girder moment is slightly increased. Thus, the partially earth anchored cable system is effective system not only on reduction of girder axial forces but also improvement of structural safety of a cable-stayed bridge under dynamic loads such as seismic and wind loads.

Local Field Distribution in YNi$_2B_2C$ Superconductor (YNi$_2B_2C$의 초전도 상태에서 국소자기장의 분포)

  • Kim, Do-Hyeong;Lee, Kyu-Ho;Han, Ki-Seong;Seo, Seung-Won;Lee, Moo-Hee;Lee, Seong-Ik;Cho, Byeong-Ki
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.251-255
    • /
    • 1999
  • Local field distribution in the mixed state of type II superconductors has been numerically calculated and compared with $^{11}$B NMR spectra for YNi$_2B_2C$ single crystals. We find that only small distortion of vortex positions from the perfect lattice points is enough to smear out the low frequency shoulder. As the vortices are further distorted, the line shape changes from an asymmetric shape with a high frequency tail to a symmetric Gaussian line shape. It is found that the second moment of the field distribution has a major contribution from the high frequency tail. Consequently, a linewidth of the full width at half maximum calculated from the second moment assuming for a Gaussian line shape is overestimated.

  • PDF

Experimental Study on the Laterally Loaded Behavior of Single Pole Foundation (강관주 철탑기초의 수평거동에 관한 실험적 연구)

  • Kim, Dae-Hong;Kim, Kyoung-Yul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1087-1094
    • /
    • 2008
  • The drilled pier foundation is widely used to support transmission line structures due to its simplicity of construction. When this foundation type is used in conjunction with a single shaft or H-frame structure, it is subjected to a high overturning moment, combined with modest vertical and shear loads. Since the length and diameter of drilled piers are often governed by a maximum permissible deflection, many drilled piers being installed today are very conservatively designed. In this study, Five prototype field-tests (1/8 scale) have been conducted in order to determine the lateral resistance of drilled pier foundation for single pole structures. These test results reveal the test piers behaved essentially as rigid bodies in soil (6D) and the center of rotation of the pier were typically 0.6~0.4 of the pier depth below ground surface. Test results also show the relationship between the applied load and the deflection at the top of the pier is highly nonlinear.

  • PDF

Analysis on Biomechanical Differences Depending on Changes in Postures during Farm Work

  • Lee, Chulgab;Hong, Wanki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.307-317
    • /
    • 2016
  • Objective: This study looks into biomechanical variables occurring when one moves in a sitting posture, and presents objective references to make improvements in work environments of farm workers. Background: The farmers have more common musculoskeletal disorders compared to other professions, because they are much more exposed to biomechanical risk factors. The sitting posture that is the representative form of the squatted, can cause typical knee joint diseases, such as osteoarthritis or patellofemoral pain syndrome of the knee joint. Therefore, a quantitative study of knee load upon the movement in a squatting posture is required. Method: In order to proceed with its investigation, the study examined movements in a sitting posture with and without a lower body supporter through a threedimensional image analysis and by using Surface EMG. The study compared and analyzed the average muscle activity and the maximum muscle activity as well. Results: Every movement in a sitting posture is related to loads onto the knee joints and, when the farm workers move to sides, the study observed a high level of bowlegged moment. The study also noticed differences in muscle activity of medial gastrocnemius with and without the lower body supporter. Conclusion and Application: The study argues that what has been discussed so far is evidence to prove how the farm working environments should be improved in consideration of these movements observed when the farm workers move in a sitting posture.

A Study on the Robust Optimal Supporting Positions of TFT-LCD Glass Panel (TFT-LCD 용 유리기판의 강건 최적 지지 위치의 선정에 관한 연구)

  • Huh Jae-Sung;Jung Byung-Chang;Lee Tae-Yoon;Kwak Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1001-1007
    • /
    • 2006
  • In this paper we present robust optimal supporting positions for large glass panels used for TFT-LCD monitors when they are stored in a cassette during manufacturing process. The criterion taken is to minimize their maximum deflection. Since they are supported by some supports and have large deformations, contact analysis with a geometrically nonlinear effect is necessary. In addition, the center of a panel can not be positioned exactly as intended and should be considered as uncertainties. To take into account of these effects, the mean and the standard deviation of system response functions, particularly the deflection of the panels, need be calculated. A function approximation moment method (FAMM) is utilized to estimate them. It is a special type of response surface methodology for structural reliability analysis and can be efficiently used to estimate the two stochastic properties, that is, the system performance and the perturbations caused by uncertainties. For a design purpose, they are to be minimized simultaneously by some optimization algorithm to obtain robust optimal supporting positions.

Re-evaluated Overstrength Factor for Capacity Design of Reinforced Concrete Bridge Columns (철근콘크리트 기둥의 성능설계를 위한 모멘트 초과강도계수에 관한 연구)

  • Lee, Jae-Hoon;Choi, Jin-Ho;Ko, Seong-Hyun;Kwon, Soon-Hong
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.308-315
    • /
    • 2005
  • The capacity protection is normally related with slenderness effect of the columns, force transfer in connections between columns and adjacent elements, and shear design of columns. It is intends to prevent brittle failure of the structural components of bridges, so that the whole bridge system may show ductile behavior and failure during earthquake events. For bridge systems, this means it is necessary to assess the overstrength capacity of columns prior to proceeding with the design of foundation and superstructure. The objective of this paper is to develop a capacity design approach that applies an overstrength factor for determination of possible maximum shear force in the plastic hinge zone of reinforced concrete bridge columns. In order to estimate and determine overstrength factor, material strength was developed to investigate for actual material strength total 3,407 steel and 5,405 concrete by domestic product. Based on actual material strength, this paper was conducted on moment overstrength factors using moment-curvature analysis program. And also design recommendations for capacity design are presented to revise the annual report, KEERC 2002.

  • PDF

Risk Assessment for the Failure of an Arch Bridge System Based upon Response Surface Method(I): Component Reliability (응답면 기법에 의한 아치교량 시스템의 붕괴 위험성평가(I): 요소신뢰성)

  • Cho, Tae-Jun;Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.74-81
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method(RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.