• Title/Summary/Keyword: maximum modulus function

Search Result 48, Processing Time 0.038 seconds

Seasonal Changes of Water Relations Parameters of the Korean Mistletoe (Viscum album var. coloratum) Leaves (겨우살이 엽의 계절별 수분특성)

  • Lee, Kyeong-Cheol;Kim, Cheol-Woo;Yi, Jae-Seon;Han, Sang-Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.461-468
    • /
    • 2012
  • This study was conducted to study the seasonal changes of relative water relations parameters by pressure-volume curves of Korean mistletoe (Viscum album var. coloratum) leaves for understanding ecological characteristics. In growing season, the osmotic potentials at full turgor (${\Psi}_o^{sat}$) and at incipient plasmolysis (${\Psi}_o^{tlp}$) decreased, while increased the maximum bulk elastic modulus of the cell wall ($E_{max}$) and relavive water content ($RWC^{tlp}$). Korean mistletoe in Quercus variabilis and Korean mistletoe in Quercus mongolica in November showed best maximum perssure potential (${\Psi}_{P,\;max}$). Pressure potential (${\Psi}_P$) and water potential (${\Psi}_L$) in Korean mistletoe in Quercus variabilis were rapidly decreased with decreasing of relative water content. The values of $RWC^{tlp}$ in November were all above 84% showing that the function of osmoregulation is somewhat better, and symplastic water content (Vo/DW) and maximum water content (Vt/DW) were variable seasonally. Thus, responses to water relations of Korean mistletoe in Quercus variabilis and Korean mistletoe in Quercus mongolica such as ${\Psi}_o^{sat},\;{\Psi}_o^{tlp},\;E_{max},\;{\Psi}_{P,\;max},\;RWC^{tlp}$ showed increaing drought tolerance with increasing of leaf aging.

Optimum Design of a Helicopter Tailrotor Driveshaft Using Flexible Matrix Composite (유연복합재를 이용한 헬리콥터 꼬리날개 구동축의 최적 설계)

  • Shin, Eung-Soo;Hong, Eul-Pyo;Lee, Kee-Nyeong;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1914-1922
    • /
    • 2004
  • This paper provides a comprehensive study of optimum design of a helicopter tailrotor driveshaft made of the flexible matrix composites (FMCs). Since the driveshaft transmits power while subjected to large bending deformation due to aerodynamic loadings, the FMCs can be ideal for enhancing the drivetrain performance by absorbing the lateral deformation without shaft segmentation. However, the increased lateral flexibility and high internal damping of the FMCs may induce whirling instability at supercritical operating conditions. Thus, the purpose of optimization in this paper is to find a set of tailored FMC parameters that compromise between the lateral flexibility and the whirling stability while satisfying several criteria such as torsional buckling safety and the maximum shaft temperature at steadystate conditions. At first, the drivetrain was modeled based on the finite element method and the classical laminate theory with complex modulus approach. Then, an objective function was defined as a combination of an allowable bending deformation and external damping and a genetic algorithm was applied to search for an optimum set with respect to ply angles and stack sequences. Results show that an optimum laminate consists of two groups of layers: (i) one has ply angles well below 45$^{\circ}$ and the other far above 45$^{\circ}$ and (ii) the number of layers with low ply angles is much bigger than that with high ply angles. It is also found that a thick FMC shaft is desirable for both lateral flexibility and whirling stability. The genetic algorithm was effective in converging to several local optimums, whose laminates exhibit similar patterns as mentioned above.

Synthesis and Characterization of CrZr-O-N Films Using Cr-Zr Segment Targets by Unbalanced Magnetron Sputtering

  • Kim, Dong Jun;La, Joung Hyun;Ki, Sung Min;Lee, Sang Yul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.94-94
    • /
    • 2013
  • The Cr-Zr-N films have much improved mechanical properties and very smooth surface roughness. However, in spite of their outstanding properties, the Cr-Zr-N coatings revealed their mechanical properties deteriorated severely with increasing Zr content at $500^{\circ}C$ ecause of very rapid oxidation. Recently oxynitride films have been widely studied due to their excellent unique mechanical properties and oxidation resistance. In this work, CrZr-O-N films with various O contents were synthesized by unbalanced magnetron sputtering with Cr-Zr segment targets (Cr:Zr volume ratios is 1:1) and all films were prepared in a nitrogen rich mixture of N2 and O2. Characteristics such as crystalline structure, hardness and chemical composition as a function of the O content were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), microhardness testing system and energy dispersive spectroscopy (EDS). Results showed that the thin films had dense and compact microstructure as O content in the films increases. The microstructure of the thin films consisted of mainly crystalline Cr (Zr)N phase and Cr2O3 phase. The maximum hardness and elastic modulus of the films was measured to be approximately 33.2 GPa and 280.6 GPa from the films with low content of O elements. Detailed experimental results will be presented.

  • PDF

The Performance Comparison of MMA and S-MMA Adaptive Equalization Algorithm for QAM Signal (QAM 신호에대한 MMA와 S-MMA 적응 등화 알고리즘의 성능 비교)

  • Kang, Dae-Soo;Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • This paper deals with the performance comparison of blind adaptive equalization algorithm, the MMA and S-MMA, that is used for compensation of the amplitude and phase distortion simultaneously which occurs in the time dispersive channel. The present CMA algorithm is possible to compensates the amplitude only, but not in phase, so it needs to the another additional circuit for compensating the phase. In order to overcoming the abovemensioned shorthand, the improved cost function is applied to the MMA algorithm. In MMA algorithm, the error is consists of the dispersion constant only, but in S-MMA, the error is consists of the dispersion constant considering the output of decision device (sliced symbol) in order to updating the tap coefficients. By using the two kind error signal, the adaptive equalization algorithm has different performance. In this paper, we compare to the adaptive equalization algorithm performance by using the recovered constellation, residual isi, MD (Maximum Distortion) and SER as a index when the transmitting signal is 16 and 64-QAM and then passing through the same communication channel. As a result of simulation, the S-MMA can improving the Roburstness in SER performance compared to the MMA in the high order QAM signal.

Flow Tests of Sandy-Clay Column due to Increasing Water Content and Their Simulation Using Particle Method (함수비 증가에 따른 모래질 점토기둥의 붕괴실험 및 입자법 시뮬레이션)

  • Park, Sung-Sik;Chang, Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.25-37
    • /
    • 2014
  • Clay or sand does not exist alone but various sizes of soil are mixed in the field. In this study, the effect of water content on large deformation of such mixed soils is studied by using soil column tests and a particle method. A soil column with 7 cm in diameter and 13 cm in height, which was made out of kaolinite with sand content of 0, 10, 25, or 50%, was tested for large deformation. Its deformation was monitored with time. While increasing its water content from 40, 60, to 80%, a total of 12 types of soil column tests were carried out. The particle method simulated their deformation with time. A maximum plastic shear modulus, which was a function of undrained shear strength and plasticity index for soils with different water contents, was associated with soil viscosity to simulate large deformation of soil column. When a sand content of soil column was constant, the deformation of soil column increased with increasing water content. When a water content of soil column was constant, large deformation occurred with increasing the sand content. The maximum deformation, which was 22 cm in diameter, was observed in the case of water content of 80% and sand content of 50%. The particle method was able to relatively well simulate such large deformation and stress change of soils.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.

Comparison of Water Potential Parameters in Aster scaber and Synurus deltoides Leaves Obtained from P-V Curves (P-V 곡선법에 의한 참취와 수리취의 수분포텐셜 비교)

  • Lee, Kyeong-Cheol;Jeon, Seong-Ryeol;Han, Sang-Sup
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.413-418
    • /
    • 2011
  • This study was carried out to establish a proper cultivation site and diagnose the drought-tolerance of Aster scaber and Synurus deltoides leaves by using Pressure-volume curves. In order to measure pressure-volume (P-V) curves, Aster scaber and Synurus deltoides were cut off above ground part and the tip of the cutting were placed in water, which was covered with a plastic bag. Samples were kept overnight (about 12 hours) in darkness at room temperature (20~25$^{\circ}C$) to achieve maximal turgor (full saturation). The pressure in the chamber was gradually increased from 0.3MPa to 1.8MPa by nitrogen gas. After measured, leaf samples were dried at 80$^{\circ}C$ for 48 hours and dry weight of each samples were determined. The result of the original bulk osmotic potential at maximum turgor ${\Psi}^{sat}_o$ sat was lower -0.8 MPa in Aster scaber leaves than -0.7 MPa Synurus deltoides leaves. Also the osmotic potential at incipient plasmolysis ${\Psi}^{tlp}_o$ in Aster scaber leave was -0.9 MPa. In contrast, the value of maximum bulk modulus of elasticity $E_{max}$ of Aster scaber leaves were approximately two folds higher than that of Synurus deltoides leaves. The values of the relative water content at incipient plasmolysis $RWC^{tlp}$ are all above 90% showing that the function of osmoregulation is somewhat better, and Vo/DW, Vt/DW, Ns/DW of Synurus deltoides leaves were approximately 1~2 times higher than that of Aster scaber leaves. Thus, responses to water relations of Aster scaber and Synurus deltoides such as ${\Psi}^{sat}_o$, ${\Psi}^{tlp}_o$, $E_{max}$, ${\Psi}_{P,max}$, $RWC^{tl}$ were shown that the Aster scaber leaves was slightly higher drought-tolerance than Synurus deltoides leaves. However, in both of Aster scaber and Synurus deltoides, occurring incipient plasmolysis at the high water content, have a relatively lower drought-tolerance property indicating that growth of these plants are cultivated appropriate in high moisture soil sites.

Brittle rock property and damage index assessment for predicting brittle failure in underground opening (지하공동의 취성파괴 예측을 위한 암석물성 및 손상지수 평가)

  • Lee, Kang-Hyun;Bang, Joon-Ho;Kim, Jin-Ha;Kim, Sang-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.327-351
    • /
    • 2009
  • Laboratory tests are performed in this paper to investigate the brittle failure characteristics of over-stressed rocks taken in deep depth. Also, numerical simulation performed using that the so-called CWFS(Cohesion Weakening Frictional Strengthening) model is known to predict brittle failure phenomenon reasonably well. The most typical rock types of Korean peninsula - granite and gneiss - were used for testing. Results of uniaxial compression tests showed that the crack initiation stress was about 41 % to 42% of the uniaxial compressive strength regardless of rock types, where as, the crack damage stress of granite was about 75%, and that of gneiss was about 97%. Through the damage-controlled test, strength parameters of each rock were obtained as a function of damage degree. After the peak, the crack damage stress and the maximum stress were decreased, The cohesion was decreased and the friction angle was increased with increase of rock damage. Before reaching the peak, the elastic modulus was slightly increased, while decreased after the peak. Poisson's ratio was increased as the damage of rock proceeds. Comparison of uniaxial compression tests and damage-controlled tests shows the crack initiation stress estimated from the damage-controlled test fluctuated within the range of crack initiation stress obtained from the uniaxial compression test; the crack damage stress was less than that estimated from the uniaxial compression test. In order to predict the critical depth that brittle failure occurs, numerical simulations using the CWFS model were performed for an example site. Material parameters obtained from the laboratory tests mentioned above were used for CWFS simulation. Comparison between the critical depth predicted from the numerical simulation using the CWFS model and that predicted by using the damage index proposed by Martin et al.(l999), showed that critical depth cannot be reasonably predicted by the currently used damage index except for circular tunnels. A modified damage index was proposed by the author which takes the shape of tunnels other than circular into account.