• Title/Summary/Keyword: maximum modulus function

Search Result 48, Processing Time 0.027 seconds

Adaptive Equalization Algorithm of Improved-CMA for Phase Compensation (위상 보상을 위한 개선된 CMA 적응 등화 알고리즘)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.63-68
    • /
    • 2014
  • This paper related with the I-CMA (Improved-CMA) algorithm that is possible to compensates of phase in CMA adatpve equalizer which is used for the elemination of intersymbol interference in the multipath fading and band limit characteristics of channel. The new cost function is proposed for the eliminate the amplitude and phase simulataneous by modifying the cost fuction for get the error signal in present CMA algorithm. It has a merit to the algorithm simplicities and eliminats the PLL device for phase compensation after equalization. For proving this, the recovered signal constellation that is the output of equalizer output signal and the residual isi and Maximum Distortion charateristic learning curve that are presents the convergence performance in the equalizer and the overall frequency transfer function of channel and equalizer were used. As a result of computer simulation, the I-CMA has more good compensation capability of amplitude and phas in the recovered constellation. But the convergence time is slow due to the simultaneously phase compensation.

A Viscoplastic Constitutive Model Based on Overstress Concept with Time-Temperature Superposition Principle (시간-온도 중첩이론을 적용한 아스팔트 바인더의 점소성 구성 모형)

  • Yun, Tae-Young;Ohm, Byung-Sik;Yoo, Pyeong-Jun;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.75-83
    • /
    • 2012
  • PURPOSES: Suggestion of asphalt binder constitutive model based on time-temperature superposition principle and overstress concept in order to describe behavior of asphalt binders. METHODS: A series of temperature sweep tests and multiple stress creep and recovery(MSCR) tests are performed to verify the applicability of time-temperature superposition principle(t-Ts) and to develop viscoelastoplastic constitutive equation based on overstress concept. For the tests, temperature sweep tests at various high temperature and various frequency and MSCR test at $58^{\circ}C$, $64^{\circ}C$ $70^{\circ}C$, $76^{\circ}C$, and $82^{\circ}C$ are performed. From the temperature sweep tests, dynamic shear modulus mastercurve and time-temperature shift function are built and the shift function and MSCR at $58^{\circ}C$ are utilized to determine model coefficients of VBO model. RESULTS: It is observed that the time-temperature shift function built at low strain level of 0.1% is applicable not only to 1.0% strain level temperature sweep test but also maximum 500,00% strain level of MSCR test. As well, the modified VBO model shows perfect prediction on MSCR measured strain at the other temperatures. CONCLUSIONS: The Time-temperature superposition principle stands hold from very low strain level to very high strain level and that the modified VBO model can be applicable for various range of strain and temperature region to predict elastic, viscoelastic, and viscoplastic strain of asphalt binders.

Probabilistic analysis of spectral displacement by NSA and NDA

  • Devandiran, P.;Kamatchi, P.;Rao, K. Balaji;Ravisankar, K.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.439-459
    • /
    • 2013
  • Main objective of the present study is to determine the statistical properties and suitable probability distribution functions of spectral displacements from nonlinear static and nonlinear dynamic analysis within the frame work of Monte Carlo simulation for typical low rise and high rise RC framed buildings located in zone III and zone V and designed as per Indian seismic codes. Probabilistic analysis of spectral displacement is useful for strength assessment and loss estimation. To the author's knowledge, no study is reported in literature on comparison of spectral displacement including the uncertainties in capacity and demand in Indian context. In the present study, uncertainties in capacity of the building is modeled by choosing cross sectional dimensions of beams and columns, density and compressive strength of concrete, yield strength and elastic modulus of steel and, live load as random variables. Uncertainty in demand is modeled by choosing peak ground acceleration (PGA) as a random variable. Nonlinear static analysis (NSA) and nonlinear dynamic analysis (NDA) are carried out for typical low rise and high rise reinforced concrete framed buildings using IDARC 2D computer program with the random sample input parameters. Statistical properties are obtained for spectral displacements corresponding to performance point from NSA and maximum absolute roof displacement from NDA and suitable probability distribution functions viz., normal, Weibull, lognormal are examined for goodness-of-fit. From the hypothesis test for goodness-of-fit, lognormal function is found to be suitable to represent the statistical variation of spectral displacement obtained from NSA and NDA.

Flexural Properties and Thermal Stability of Bifunctional/Tetrafunctional Epoxy Blends (2 -관능성 에폭시 수지 블렌드의 굴곡 특성과 열 안전성)

  • Yu, Hui-Yeol;Lee, Jae-Rak;Lee, Jong-Mun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.75-80
    • /
    • 1994
  • Flexural properties and thermal stability have been studied as a function of blend composition in bifunctional DGERA (diglycidyl ether of hisphenol A)/tetrafunctional TGDDM(tetrag1ycidyl diamino diphenyl methane) cured with DDM(4, 4'-diamino diphenyl methane). The flexural modulus and the glass transition temperature increase with an increase of TGDDM and show discontinuous dependence on blend composition around the composition range of 80/20~60/40(L)GEBA/TGDDM). This can be explained with a structural phase inversion (ductile-to-brittle) in crosslinking networks. With increasing TGDDM, the maximum decomposition temperature(Ts) increases, whereas the activation energy during thermal degradation decreases.

  • PDF

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

Prediction of compressive strength of concrete using neural networks

  • Al-Salloum, Yousef A.;Shah, Abid A.;Abbas, H.;Alsayed, Saleh H.;Almusallam, Tarek H.;Al-Haddad, M.S.
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • This research deals with the prediction of compressive strength of normal and high strength concrete using neural networks. The compressive strength was modeled as a function of eight variables: quantities of cement, fine aggregate, coarse aggregate, micro-silica, water and super-plasticizer, maximum size of coarse aggregate, fineness modulus of fine aggregate. Two networks, one using raw variables and another using grouped dimensionless variables were constructed, trained and tested using available experimental data, covering a large range of concrete compressive strengths. The neural network models were compared with regression models. The neural networks based model gave high prediction accuracy and the results demonstrated that the use of neural networks in assessing compressive strength of concrete is both practical and beneficial. The performance of model using the grouped dimensionless variables is better than the prediction using raw variables.

Water Relations Parameters of Heracleum moellendorffii Hance Obtained from Pressure-Volume Curves (P-V 곡선법을 활용한 어수리의 수분특성 분석)

  • Lee, K.C.;Kwon, Y.H.;Lee, K.M.;Han, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2017
  • This study was carried out to establish a proper cultivation site and to diagnose the drought tolerance of Heracleum moellendorffii leaves by using pressure-volume curves. As a result of analysing data measured, the leaf of H. moellendorffii showed the osmotic pressure at full turgor (Ψosat) was -1.0MPa, and that at incipient plasmolysis (Ψotlp) -1.2MPa. Then, the value of maximum bulk modulus of elasticity Emax was 28MPa, showing the sightly strong drought tolerance of H. moellendorffii. Furthermore, the values of relative water contents RWCtlp and RWC* were above 88%, showing that the function of osmoregulation is somewhat better. Thus, responses to water relations such as Ψosat, Ψotlp, Emax, RWCtlp and RWC* of H. moellendorffii showed it's slightly high drought tolerance property.

Evaluation of Drought Tolerance of Oplopanax elatus Obtained from Pressure-Volume Curves (P-V 곡선법을 활용한 땃두릅나무의 내건성 평가)

  • Lee, K.C.;Kwon, Y.H.;Kwon, Y.K.;Han, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • This study was carried out to establish a proper cultivation site and to diagnose the drought tolerance of Oplopanax elatus leaves by using pressure-volume curves. As a result of analysing data measured, the leaf of Oplopanax elatus showed the osmotic pressure at full turgor(Ψosat) was -0.77 MPa, and the osmotic pressure at incipient plasmolysis(Ψotlp) was -0.90 MPa. Then, the value of maximum bulk modulus of elasticity Emax was 3.7 MPa, showing that slightly lower drought tolerance of Oplopanax elatus. Furthermore, the values of relative water contents RWCtlp and RWC* were above 80%, showing that the function of osmoregulation is somewhat better. Thus, responses to water relations such as Ψosat, Ψotlp, Emax, RWCtlp and RWC* of Oplopanax elatus showed relatively lower drought-tolerance property indicating that those growth are appropriate in high moisture soil sites.

An Alternative Perspective to Resolve Modelling Uncertainty in Reliability Analysis for D/t Limitation Models of CFST (CFST의 D/t 제한모델들에 대한 신뢰성해석에서 모델링불확실성을 해결하는 선택적 방법)

  • Han, Taek Hee;Kim, Jung Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.409-415
    • /
    • 2015
  • For the design of Concrete-Filled Steel Tube(CFST) columns, the outside diameter D to the steel tube thickness t ratio(D/t ratio) is limited to prevent the local buckling of steel tubes. Each design code proposes the respective model to compute the maximum D/t ratio using the yield strength of steel $f_y$ or $f_y$ and the elastic modulus of steel E. Considering the uncertainty in $f_y$ and E, the reliability index ${beta}$ for the local buckling of a CFST section can be calculated by formulating the limit state function including the maximum D/t models. The resulted ${beta}$ depends on the maximum D/t model used for the reliability analysis. This variability in reliability analysis is due to ambiguity in choosing computational models and it is called as "modelling uncertainty." This uncertainty can be considered as "non-specificity" of an epistemic uncertainty and modelled by constructing possibility distribution functions. In this study, three different computation models for the maximum D/t ratio are used to conduct reliability analyses for the local buckling of a CFST section and the reliability index ${beta}$ will be computed respectively. The "non-specific ${beta}s$" will be modelled by possibility distribution function and a metric, degree of confirmation, is measured from the possibility distribution function. It is shown that the degree of confirmation increases when ${beta}$ decreases. Conclusively, a new set of reliability indices associated with a degree of confirmation is determined and it is allowed to decide reliability index for the local buckling of a CFST section with an acceptable confirmation level.

Effect of Pile Head Constraint on Lateral Behavior of Single Flexible Pile in Non-homogeneous Sand (비균질 사질토 지반에서 단일 휨성말뚝의 수평거동에 대한 말뚝 두부 구속효과 연구)

  • 김병탁;김영수;정성관
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.65-80
    • /
    • 1999
  • This paper shows the results of a series of model tests on the behavior of single flexible pile, which is subjected to lateral load, in non-homogeneous Nak-Dong River sands, consisting of two layers. The purpose of the present paper is to investigate the effects of ratio of lower layer thickness to embedded pile length, ratio of soil modulus of upper layer to lower one, and pile head constraint condition on the characteristics of lateral behavior of single pile. These effects can be quantified only by the results of model tests. Based on the results of model tests, in non-homogeneous sand, it was found that the lateral behavior depends upon the ratio of soil modulus of upper layer to lower one. And, in respect of deflection, it was found that the relationship between the deflection ratio of non-homogeneous to homogeneous sand and the ratio of lower layer thickness to embedded pile length can be fitted to exponential function of H/L and lateral load by model tests results. Also, in respect of maximum bending moment, it was found that the relationship H/L and $MBM_{fixed-head}/MBM_{free-head}$ can be fitted to linear function of H/L by model test results.

  • PDF