• Title/Summary/Keyword: maximum modulus function

Search Result 48, Processing Time 0.03 seconds

A Performance Improvement of CR-MMA Adaptive Equalization Algorithm using Adaptive Modulus and Adaptive Stepsize (Adaptive Modulus와 Adaptive Stepsize를 이용한 CR-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.107-113
    • /
    • 2019
  • This paper proposes the Hybrid-CRMMA adaptive equalization algorithm that is possible to improves the performance of CR-MMA based on adaptive modulus and adaptive stepsize. The 16-QAM nonconstant modulus signal is reduced to 4-QAM constant modulus signal, and the error signal were obtained based on the fixed statistic modulus of transmitted signal. It is possible to improving the currently MMA adaptive equalization performance. The proposed Hybrid-CRMMA composed of adaptive modulus which is propotional to the power of equalizer output and adaptive stepsize which is function of the nonlinearties of error signal, and its improved equalization performance were confirmed by computer simulation. For this purpose, the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER that is meaning the robustness of external noise of algorithm were used. As a result of computer simulation, it was confirmed that the proposed Hybrid-CRMMA has more superior performance in every index compared to currently CR-MMA.

Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load

  • Li, Gang
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.185-198
    • /
    • 2003
  • The concept of performance based seismic design has been gradually accepted by the earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the most important principles and more attention is paid to the structural performance at the inelastic stage. Since there are many uncertainties in seismic design, reliability analysis is a major task in performance based seismic design. However, structural reliability analysis may be very costly and time consuming because the limit state function is usually a highly nonlinear implicit function with respect to the basic design variables, especially for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical properties of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an efficient approximate approach of reliability analysis. The present paper studies the statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earthquake load, dead load, live load, steel elastic modulus, yield strength and structural member dimensions are considered. Possible probability distributions for the maximum story are evaluated using K-S test. The results show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frames is related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less than 0.3%), an extreme value type I distribution is the best choice. However, for large drifts (more than 0.35%), an extreme value type II distribution is best.

ITERATED ENTIRE FUNCTIONS AND THEIR GROWTH PROPERTIES ON THE BASIS OF (p, q)-TH ORDER

  • Biswas, Tanmay;Choi, Junesang;Das, Pranab;Datta, Sanjib Kumar
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.169-212
    • /
    • 2016
  • Entire functions have been investigated so popularly to have been divided into a large number of specialized subjects. Even the limited subject of entire functions is too vast to be dealt with in a single volume with any approach to completeness. Here, in this paper, we choose to investigate certain interesting results associated with the comparative growth properties of iterated entire functions using (p, q)-th order and (p, q)-th lower order, in a rather comprehensive and systematic manner.

Shear Load Performance Test in Accordance with Sheathing Materials of Shear Wall (전단벽의 덮개재료에 따른 전단저항 성능)

  • Jang, Sang-Sik;Shin, Il-Joong;Kim, Yun-Hui
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.271-276
    • /
    • 2010
  • In this study, the light-frame wood shear walls according to the sheathing materials was carried out to investigate the shear load performance. Most common sheathing materials are the structural OSB and gypsum board used to consist wall of wood-frame house. Seven different type of specimens are composed of several sheathing materials and shear test was taken to evaluate shear performance by KS F 2154. As a result, shear walls(G12.5/G12.5 and G12.5/OSB) show that maximum shear strength and shear rigidity modulus are 7316N/mm${\cdot}$118.25 N/mm and 11129 N/mm${\cdot}$184.66 N/mm respectively. The shear wall using gypsum board 15mm improve maximum shear strength and shear rigidity modulus about 30%. The shear wall using 15mm gypsum board showed intermediate value in one side specimens. Different types of shear walls could be compared with the shear load performance. Also, nailed joint failure aspects are different to sheathing material and installing method.

The effect of mechanical properties of bone in the mandible, a numerical case study

  • Ramos, Antonio;Marques, Hugo;Mesnard, Michel
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.67-76
    • /
    • 2014
  • Bone properties are one of the key components when constructing models that can simulate the mechanical behavior of a mandible. Due to the complexity of the structure, the tooth, ligaments, different bones etc., some simplifications are often considered and bone properties are one of them. The objective of this study is to understand if a simplification of the problem is possible and assess its influence on mandible behavior. A cadaveric toothless mandible was used to build three computational models from CT scan information: a full cortical bone model; a cortical and cancellous bone model, and a model where the Young's modulus was obtained as function of the pixel value in a CT scan. Twelve muscle forces were applied on the mandible. Results showed that although all the models presented the same type of global behavior and proximity in some locations, the influence of cancellous bone can be seen in strain distribution. The different Young's modulus defined by the CT scan gray scale influenced the maximum and minimum strains. For modeling general behavior, a full cortical bone model can be effective. However, when cancellous bone is included, maximum values in thin regions increase the strain distribution. Results revealed that when properties are assigned to the gray scale some peaks could occur which did not represent the real situation.

Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites

  • Shim, Young-Sun;Park, Soo-Jin
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.311-315
    • /
    • 2010
  • In this work, the effect of glycidyl methacrylate grafted multi-walled carbon nanotubes (GMA-MWCNTs) on the viscoelastic behaviors of polypropylene (PP) based nanocomposites was studied. The GMA-MWCNTs/PP was prepared using a bravender at $200^{\circ}C$ by melt mixing as a function of GMA-MWCNT content. The viscoelastic behaviors of GMA-MWCNTs/PP nanocomposites were measured by a rheometer. It was found that the GMA-MWCNTs were homogeneously dispersed in the PP matrix. The GMA-MWCNTs/PP nanocomposites showed higher storage modulus, loss modulus, and shear viscosity compared to pure PP nanocomposites and the maximum value was shown at 2.0 wt% GMA-MWCNTs loading. These results were probably attributed to the strong interfacial interaction between the GMA-MWCNT and the PP matrix.

Viscoelastic and Gelation Studies of SEBS Thermoplastic Elastomer in Different Hydrocarbon Oils

  • Kim Jin-Kuk;Paglicawan Marissa A.;Balasubramanian Maridass
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.365-372
    • /
    • 2006
  • Poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS) triblock copolymer was studied by dissolving the ethylene butylene midblock in selective hydrocarbon oils. These oils differ in their aromatic, paraffinic and naphthenic content. Dynamic rheological studies showed that the storage modulus (G') exceeded the loss modulus (G') for all the gels over the entire range of frequency, thereby confirming them as physical gels. However, the behavior of G' and G' as a function of frequency depended primarily on the oil type. The gelation melting temperature decreased drastically with increased oil aromaticity. Small angle X-ray scattering studies revealed that the maximum interdomain interference shifted to a higher angle depending on the composition and type of hydrocarbon oil.

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.

Comparison of flexural strength and modulus of elasticity in several resinous teeth splinting materials (여러 레진계 치아고정 재료의 굴곡강도 및 탄성계수 비교)

  • Yoo, Je-In;Kim, Soo-Yeon;Batbayar, Bayarchimeg;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • Purpose: Direct splinting material should have high flexural strength to withstand force during mastication and low modulus of elasticity to provide some movement while force applied for relief of stress. The purpose of this study was to compare flexural strength and modulus of elasticity of several resinous splinting materials. Materials and Methods: Four materials; Super-Bond C&B, G-FIX, G-aenial Universal Flo, FiltekTM Z350 XT; were used in this study. Fifteen rectangular bar specimens of each material were prepared. Three-point bending test were performed to determine physical properties. Maximum load at fracture was recorded and flexural strength and modulus of elasticity were calculated. One-way analysis of variance (ANOVA) and Scheffe's tests at a 0.05 level of significance were conducted on all test results. Results: Statistical analysis reveals that Super-Bond C&B had significant low mean value for flexible strength and the other three materials showed no significant difference. For modulus of elasticity, Super-Bond C&B exhibited statistically lower modulus of elasticity. G-FIX presented intermediate result, showing statistically higher modulus of elasticity than Super-Bond C&B but lower than G-aenial Universal Flo and FiltekTM Z350 XT. There was no significant difference on modulus of elasticity between G-aenial Universal Flo and FiltekTM Z350 XT. Conclusion: Using a G-FIX, the newly commercially available splinting material, which shows higher fracture resistance properties comparable to flowable and restorative composite resin and a relatively flexible nature might be a beneficial for stabilizing teeth mobility.

Goodness of Link Tests for Binary Response Data

  • Yeo, In-Kwon
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.357-366
    • /
    • 2001
  • The present paper develops a method to check the propriety of link functions for binary data. In order to parameterize a certain type of goodness of the link, a family of link functions indexed by a shape parameter is proposed. I first investigate the maximum likelihood estimation of the shape parameter as well as regression parameters and then derive their large sample behaviors of the estimators. A score test is considered to evaluate the goodness of the current link function. For illustration, I employ two families of power transformations, the modulus transformation by John and Draper (1980) and the extended power transformation by Yeo and Johnson (2000), which are appropriate to detect symmetric and asymmetric inadequacy of the selected link function. respectively.

  • PDF