• Title/Summary/Keyword: maximum heat removal

Search Result 46, Processing Time 0.027 seconds

Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head

  • Kim, Yong-Hoon;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2000
  • Parametric studies were performed to assess the sensitivity in determining the maximum in-vessel heat removal capability from the core material relocated into the lower plenum of the reactor pressure vessel (RPV)during a core melt accident. A fraction of the sensible heat can be removed during the molten jet delivery from the core to the lower plenum, while the remaining sensible heat and the decay heat can be transported by rather complex mechanisms of the counter-current flow limitation (CCFL) and the critical heat flux (CHF)through the irregular, hemispherical gap that may be formed between the freezing oxidic debris and the overheated metallic RPV wall. It is shown that under the pressurized condition of 10MPa with the sensible heat loss being 50% for the reactors considered in this study, i.e. TMI-2, KORI-2 like, YGN-3&4 like and KNGR like reactors, the heat removal through the gap cooling mechanism was capable of ensuring the RPV integrity as much as 30% to 40% of the total core mass was relocated to the lower plenum. The sensitivity analysis indicated that the cooling rate of debris coupled with the sensible heat loss was a significant factor The newly proposed heat removal capability map (HRCM) clearly displays the critical factors in estimating the maximum heat removal from the debris in the lower plenum. This map can be used as a first-principle engineering tool to assess the RPV thermal integrity during a core melt accident. The predictive model also provided ith a reasonable explanation for the non-failure of the test vessel in the LAVA experiments performed at the Korea Atomic Energy Research Institute (KAERI), which apparently indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices.

  • PDF

An Analysis on Thermal Stratification in Residual Heat Removal System Piping of Nuclear Power Plant (가동원전 잔열제거계통 배관에서의 열성층유동 해석)

  • Park, M.H.;Kim, K.C.;Kim, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1597-1602
    • /
    • 2003
  • Numerical analysis is carried out to assess the temperature distribution on the mixing tee line of Residual Heat Removal System (RHRS). In RHRS, hot and cold fluids of main and bypass piping are mixed and unmixed by the flow rate or piping layout. Thermal stratification phenomenon is a cause of major degradation on RHRS piping. According to the analysis for each operation modes, maximum temperature difference between top and bottom of piping were evaluated about 60K when the flow rate of main and bypass lines is same. Temperature difference will be decreased at the elbow on RHRS piping if the length of vertical piping is increased.

  • PDF

Counter-Current Flow Limit in Narrow Gap (간극에서의 역방향 유동 제한 현상 연구)

  • Kim, Yong-Hoon;Suh, Kune-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1054-1060
    • /
    • 1998
  • Previous counter-current flow limitation (CCFL) and critical heat flux (CHF) studies included investigations on the inlet entrance, inclined channel and gap effects for the most part. In this study, the local CHF correlation was presented to be used in the numerical analysis for the 3 dimensional hemispherical geometry. Also, first-principle analyses were performed to determine the maximum heat removal capability from the debris through the gap that may be formed during a core melt accident. The maximum heat removal capability by gap cooling can be applied in quantitatively assessing the severe accident management measures.

  • PDF

Counter-Current Flow Limit in Narrow Gap (간극에서의 역방향 유동 제한 현상 연구)

  • Kim, Yong-Hoon;Suh, Kune-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.706-712
    • /
    • 1998
  • Previous counter-current flow limitation (CCFL) and critical heat flux (CHF) studies included investigations on the inlet entrance, inclined channel and gap effects for the most part. In this study, the local CHF correlation was presented to be used in the numerical analysis for the 3 dimensional hemispherical geometry. Also, first-principle analyses were performed to determine the maximum heat removal capability from the debris through the gap that may be formed during a core melt accident. The maximum heat removal capability by gap cooling can be applied in quantitatively assessing the severe accident management measures.

  • PDF

Counter-Current Flow Limit in Narrow Gap (간극에서의 역방향 유동 제한 현상 연구)

  • Kim, Yong-Hoon;Suh, Kune-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.386-392
    • /
    • 1998
  • Previous counter-current flow limitation (CCFL) and critical heat flux (CHF) studies included investigations on the inlet entrance, inclined channel and gap effects for the most part. In this study, the local CHF correlation was presented to be used in the numerical analysis for the 3 dimensional hemispherical geometry. Also, first-principle analyses were performed to determine the Maximum heat removal capability from the debris through the gap that may be formed during a core melt accident. The maximum heat removal capability by gap cooling can be applied in quantitatively assessing the severe accident management measures.

  • PDF

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

Effect of Heat Treatment Conditions and Densities on Residual Stresses at Hybrid (FLN2-4405) P/M Steels

  • Kafkas, Firat;Karatas, Cetin;Saritas, Suleyman
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.566-567
    • /
    • 2006
  • The characteristics of residual stresses occurring in PM steel based nickel (FLN2-4405) was investigated. The measurements of residual stresses were carried out by electrochemical layer removal technique. The values and distributions of residual stresses occurring in PM steel processed under various densities and heat treatment conditions were determined. In most of the experiments, tensile residual stresses were recorded in surface of samples. The residual stress distribution on the surface of the PM steels is affected by the heat treatment conditions and density. Maximum values of residual stresses on the surface were observed sinter hardened condition and $7.4\;g/cm^3$ density. Minimum level of recorded tensile residual stresses are150 MPa and its maximum level is 370 MPa.

  • PDF

Influences of Ice Microphysical Processes on Urban Heat Island-Induced Convection and Precipitation (얼음 미시물리 과정이 도시 열섬이 유도하는 대류와 강수에 미치는 영향)

  • Han, Ji-Young;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.195-205
    • /
    • 2007
  • The influences of ice microphysical processes on urban heat island-induced convection and precipitation are numerically investigated using a cloud-resolving model (ARPS). Both warm- and cold-cloud simulations show that the downwind upward motion forced by specified low-level heating, which is regarded as representing an urban heat island, initiates moist convection and results in downwind precipitation. The surface precipitation in the cold-cloud simulation is produced earlier than that in the warm-cloud simulation. The maximum updraft is stronger in the cold-cloud simulation than in the warm-cloud simulation due to the latent heat release by freezing and deposition. The outflow formed in the boundary layer is cooler and propagates faster in the cold-cloud simulation due mainly to the additional cooling by the melting of falling hail particles. The removal of the specified low-level heating after the onset of surface precipitation results in cooler and faster propagating outflow in both the warm- and cold-cloud simulations.

Influence on EDM Surface with the Copper and Graphite Electrode According to the Discharge Energy (방전에너지에 따라 동전극과 흑연전극이 방전가공면에 미치는 영향)

  • Choi, Jae-Yong;Jeon, Eon-Chan;Jeong, Jae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.53-59
    • /
    • 1997
  • This study has been performed to inmvestigate MRR(metal removal rate), REW(relative electrode wear), surface roughness, heat transumutation layer and microhardness distribution in cross-section of the machined surface with various pulse-on duration and peak pulse current, using the copper and graphite electrode on the heat treated STD11 which is extensively used for metallic molding steel with the EDM. The results obtained are as follows; a) There exists critical pulse-on duration(If Ip equals 5A, .tau. on is 50 .mu. s) which shows the the maximum MRR in accordance with peak oulse current and the MRR decreases when the pulse-on duration exceeds the critical pulse-on during because of the abnormal electric discharge. b) Safe discharge is needed to make maximum of MRR and the metalic organization must be complicated for discharge induction. c) Graphite has much more benefits than copper electrode when rapid machining is done without electrode wear. d) The most external surface has the highest microhardness because of car- burizing from heat analysis of the dielectric fluid and the lower layar of the white covered layer has lower microhar dness than base matal because of softening.

  • PDF