• 제목/요약/키워드: maximum expansion rates

검색결과 32건 처리시간 0.029초

보텍스 사이클론을 이용한 Toluene과 CO2 처리효율에 관한 연구 (A Study on Treatment Efficiency of Toluene and CO2 using Vortex Cyclones)

  • 임계규
    • 한국대기환경학회지
    • /
    • 제20권4호
    • /
    • pp.493-501
    • /
    • 2004
  • The principle of vortex tube and cyclone was introduced to enhance the treatment efficiency of waste air streams containing particulate matters, toluene, and others developed by Hangreen Tech, Ltd. and Hoseo Chemical and Industrial Technology R&D Center. Adsorption, condensation, and/or coagulation could be induced at low temperature zone formed by vortex tube and Joule-Thomson expansion. The pressurized air was introduced at the tangential direction into the cyclone system applied with the coaxial funnel tube. Easily condensible vapors such as toluene. carbon dioxide, and water vapor were adsorbed enforcedly on coagulated or condensed materials which were formed as cores for coagulation or condensation by themselves. These types of coagulation or condensation rates were rapidly promoted as the diameter being growing up. The maximum removal efficiency for carbon dioxide and toluene was achieved to about 87 and 90 percent, respectively. The Joule-Thomson coefficients were increased with the pressure of air injected in the range of the relative humidities between 10% and 30%. An optimum value was observed within the range of the tested temperatures at a fixed pressure. In conclusion. it could be identified that the treatment efficiency would be depended on the pressure of the process air introduced and physical and chemical characteristics of waste air streams containing target materials for a designed system. The final design parameters should be decided depending upon the given system and target materials.

급확대관내에서 류유선회유동의 열전달에 관한 연구 (An Experimental Study of the Turbulent Swirling Flow and Heat Transfer Downstream of an Abrupt Expansion in a Circulat Pipe with Uniform Heat Flux)

  • 권기린;허종철
    • 한국해양공학회지
    • /
    • 제10권3호
    • /
    • pp.138-152
    • /
    • 1996
  • Many studies of heat transfer on the swirling flow or unswirled flow in a abrupt pipe expansion are widely carried out. The mechanism is not fully found evidently due to the instabilities of flow in a sudden change of the shape and appearance of turbulent shear layers in a recirculation region and secondary vortex near the corner. The purpose of this study is to obtain data through an experimental study of the swirling flow and heat transfer downstream of an abrupt expansion in a circular pipe with uniform heat flux. Experiments were carried out for the turbulent flow nd heat transfer downstream of an abrupt circular pipe expansion. The uniform heat flux condition was imposed to the downstream of the abrupt expansion by using an electrically heated pipe. Experimental data are presented for local heat transfer rates and local axial velocities in the tube downstream of an abrupt 3:1 & 2:1 expansion. Air was used as the working fluid in the upstream tube, the Reynolds number was varied from 60, 00 to 120, 000 and the swirl number range (based on the swirl chamber geometry, i.e. L/d ratio) in which the experiments were conducted were L/d=0, 8 and 16. Axial velocity increased rapidly at r/R=0.35 in the abrupt concentric expansion turbulent flow through the test tube in unswirled flow. It showed that with increasing axial distance the highest axial velocities move toward the tube wall in the case of the swirling flow abrupt expansion. A uniform wall heat flux boundary condition was employed, which resulted in wall-to-bulk temperatures ranging from 24.deg. C to 71.deg. C. In swirling flow, the wall temperature showed a greater increase at L/d=16 than any other L/d. The bulk temperature showed a minimum value at the pipe inlet, it also exhibited a linear increase with axial distance along the pipe. As swirl intensity increased, the location of peak Nu numbers was observed to shift from 4 to 1 step heights downstream of the expansion. This upstream movement of the maximum Nusselt number was accompanied by an increase in its magnitude from 2.2 to 8.8 times larger than fully developed tube flow values.

  • PDF

유한 요소법을 이용한 콘크리트 벽체 균열을 발생시키는 철근의 임계 부식량에 대한 연구 (Study on the Amount of Critical Corrosion Products of Reinforcement inducing Concrete Cover Cracking with Finite Element Analysis)

  • 김광웅;장상엽;조용범;김용철;고영태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.361-366
    • /
    • 2002
  • The deterioration of concrete structure due to corrosion of the reinforcement has created big financial losses on the overall industries. The volume expansion of the corrosion products causes internal pressure to concrete wall around reinforcing bar. If the maximum principal stress induced by internal pressure exceeds the tensile strength of the concrete at any point of time, a crack forms at any point of material. Therefore, in terms of life assessment of concrete structure, it is very important to predict the amount of corrosion products which induces initial concrete cracking. With this objective, this paper proposes the critical amount of corrosion products at interface between reinforcement and concrete using finite element analysis. If an actual survey of corrosion rates could be made, the model might supply information for condition assessment of existing concrete structure. As the mechanical properties of corrosion product and instantaneous geometry of corroded steel are considered in the analysis, the value obtained will be more realistic.

  • PDF

Micro-Computer를 이용한 기관 실린더 내의 압력측정 및 연소해석에 관한 연구 (A study on the microcomputer aided pressure progress measurement and combustion analysis in engine cylinder)

  • 김희년;김시범;하종율
    • 오토저널
    • /
    • 제10권3호
    • /
    • pp.45-50
    • /
    • 1988
  • The measurement system of the pressure in engine cylinder is developed with the aids of the microcomputer, A/D converter and simple electrical circuits. The experiment is performed in 4 cycle single cylinder Gasoline engine. When data for the pressure progress is sampled, clock signal or signal from the crank angle is used as trigger. The variation of the pressure during the cycles can be well obtained experimentally. So, the informations which are necessary in the combustion analysis, i.e. expansion pressure, indicated mean effective pressure, the magnitude and time of the maximum pressure ignition time, the rate of pressure rise and heat release and combustion rates can be obtained by the calculation using experimental data. Also, the informations about the after-burning process, the existence of the detonation waves and end time of combustion can be investigated from this study.

  • PDF

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • 대한치과보철학회지
    • /
    • 제39권6호
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF

The Adaptation of Ginseng Production of Semi-arid Environments The Example of British Columbia, Canada

  • Bailey, W.G.
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1990년도 Proceedings of International Symposium on Korean Ginseng, 1990, Seoul, Korea
    • /
    • pp.155-167
    • /
    • 1990
  • Ginseng Is renowned for both its medicinal and herbal uses and successful cultivation of Panax ginseng in Asia and Panax quinquefolium in North America has until recently taken place in the native geographical ranges of the plants. As a consequence of the potential high capital return and anticipated increases in consumer consumption, commercial cultivation of American ginseng now occurs well outside the native range of the plant in North America. In fact, the region of greatest expansion of cultivation is in the semi-arid interior region of British Columbia, Canada. Linked with this expansion is the potential domination of the ginseng industry by agricultural corporations. In the interior of British Columbia, the native deciduous forest environment of eastern North America is simulated with elevated polypropylene shade and a surface covering of straw mulch. The architecture of these environments is designed to permit maximum machinery usage and to minimize labor requirements. Further, with only a four- years growth cycle, plant densities in the gardens are high. In this hot, semi-arid environment, producers believe they have a competitive advantage over other regions in North America because of the low precipitation rates. This helps to minimize atmospheric humidity such that the conditions for fungal disease development are reduced. If soil moisture level become limited, supplemental water can be provided by irrigation. The nature of the radiation and energy balance regimes of the shade and many environments promotes high soil moisture levels. Also, the modified environment redlines soil heating. This can result in an aerial environment for the plant that is stressful and a rooting zone environment that is suloptimal. The challenge of further refining the man modified environment for enhanced plant growth and health still remains. Keywords Panax ginseng, Panax quinquefolium, cultivation, ginseng production.

  • PDF

Potential impact of climate change on plant invasion in the Republic of Korea

  • Adhikari, Pradeep;Jeon, Ja-Young;Kim, Hyun Woo;Shin, Man-Seok;Adhikari, Prabhat;Seo, Changwan
    • Journal of Ecology and Environment
    • /
    • 제43권4호
    • /
    • pp.352-363
    • /
    • 2019
  • Background: Invasive plant species are considered a major threat to biodiversity, ecosystem functioning, and human wellbeing worldwide. Climatically suitable ranges for invasive plant species are expected to expand due to future climate change. The identification of current invasions and potential range expansion of invasive plant species is required to plan for the management of these species. Here, we predicted climatically suitable habitats for 11 invasive plant species and calculated the potential species richness and their range expansions in different provinces of the Republic of Korea (ROK) under current and future climate change scenarios (RCP 4.5 and RCP 8.5) using the maximum entropy (MaxEnt) modeling approach. Results: Based on the model predictions, areas of climatically suitable habitats for 90.9% of the invasive plant species are expected to retain current ecological niches and expand to include additional climatically suitable areas under future climate change scenarios. Species richness is predicted to be relatively high in the provinces of the western and southern regions (e.g., Jeollanam, Jeollabuk, and Chungcheongnam) under current climatic conditions. However, under future climates, richness in the provinces of the northern, eastern, and southeastern regions (e.g., Seoul, Incheon, Gyeonggi, Gyeongsangnam, Degue, Busan, and Ulsan) is estimated to increase up to 292%, 390.75%, and 468.06% by 2030, 2050, and 2080, respectively, compared with the current richness. Conclusions: Our study revealed that the rates of introduction and dispersion of invasive plant species from the western and southern coasts are relatively high and are expanding across the ROK through different modes of dispersion. The negative impacts on biodiversity, ecosystem dynamics, and economy caused by invasive plant species will be high if preventive and eradication measures are not employed immediately. Thus, this study will be helpful to policymakers for the management of invasive plant species and the conservation of biodiversity.

활성 납재를 이용한 질화규소/탄소강 접합 (Joining of Silicon Nitride to Carbon Steel using an Active Metal Alloys)

  • 최영민;정병훈;이재도
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.199-204
    • /
    • 1999
  • As the engine design change to get high efficiency and performance of commercial diesel engine, surface wear of the cam follower becomes an important issues as applied load increasing at the contact face between cam follower and cam. Purpose of this study is the developing of the ceramic cam follower made of silicon nitride ceramic which is more wear resistant than the cast iron and sintered cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel can follower body using active bracing alloy. Effect of joining condition on the interfacial phases and joining strength wer examined at bvarious joining temperatures, times, and cooling rates. Crowning resulted from the difference of thermal expansion coefficient after direct brazing without using any stress-relieving inter layer was measured. Interfacial phases are mainly titanium silicide and titanium nitride which are the products between active metal(Ti) in brazing alloy and silicon nitiride. Maximum joining strength of the ceramic metal joint, measured by DBS method, was 334MPa. Crowning(R) of the prototype ceramic cam follower was 1595mm. As machining for crowning is not necessary, production cost can be reduced.

  • PDF

2차원 초음속 노즐에서의 2차 유동분사에 의한 추력 방향 제어 특성의 수치적 해석 (Numerical Analysis of Secondary Injection for Thrust Vector Control on 2-Dimensional Supersonic Nozzle)

  • 오대환;손창현;이충원
    • 한국추진공학회지
    • /
    • 제4권1호
    • /
    • pp.13-21
    • /
    • 2000
  • 2차 유동 분사에 의한 추력 방향 제어 방법은 기계적인 방법에 비해 복잡한 기계적 작동장치가 배제됨으로 무게를 줄일 수 있다. 본 연구에서는 압축성 유동 해석을 위해 개발한 코드를 이용하여 SITVC 의 최적 작동 조건을 구하였다. 수치 실험은 2차원 초음속 수축-팽창 노즐 유동에서 2차 유동의 분사 위치, 분사 유량 및 분사 각도 등이 추력 방향에 미치는 영향을 조사하였다. 유동 해석 결과 2차 유동의 분사 위치는 생성된 경사 충격파가 노즐 출구까지 분포되는 지점이 최대 전향각과 횡추력을 가지는 분사 위치임을 알 수 있었다.

  • PDF

가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험 (Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates)

  • 심규호;김민기;이윤표;장선준
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.