• 제목/요약/키워드: maximum erosion depth

검색결과 38건 처리시간 0.023초

누설전류 모니터링에 의한 옥외용 실리콘 고무의 열화 특성 평가 (The Evaluation of Degradation Characteristics of Silicone Rubber for Outdoor by Leakage Current Monitoring)

  • 김정호;송우창;조한구;박용관
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권2호
    • /
    • pp.60-64
    • /
    • 2001
  • The degradation process of silicone rubber was investigated by leakage current monitoring in Inclined-Plane method. DAS (Data Acquisition System) with 12-bit, 8-channel A/D converter was prepared. Average current, cumulative charge, current waveform and the number of peak pulses were measured on-line. And, FFT (Fast Fourier Transform) analysis was performed with stored current waveform. Besides, maximum erosion depth was measured in order to use as the indicator of the degradation process. So, the results of leakage current components and maximum erosion depth measurements were compared to find one or more components which have trends of changing similarly to that of erosion process. The result suggests that the ratio of peak current to r.m.s. current, harmonic contents and the number of peak pulses are well corresponding with the degradation process.

  • PDF

Evaluation of the Potential of Commercial Vitamin Drinks to Induce Tooth Erosion

  • Kim, Han-Na;Yoon, Tae-Lim;Min, Ji-Hyun
    • 치위생과학회지
    • /
    • 제19권3호
    • /
    • pp.154-161
    • /
    • 2019
  • Background: The market for vitamin drinks is expanding both in Korea and worldwide. However, it was difficult to find studies regarding the possibility of tooth erosion induction due to vitamin drinks. The purpose of the present in vitro study was to evaluate the effect of tooth erosion caused by a few commercial vitamin beverages on bovine teeth enamel in terms of erosion depth and fluorescence loss. Methods: Three experimental groups (vitamin drinks), a positive control group (Coca-Cola), and a negative control group (mineral water) were established. Each group consisted of 5 specimens obtained from sound bovine teeth. The pH and titratable acidity of beverages were measured. Specimens were immersed in the beverages and artificial saliva for 6 and 18 hours, respectively. This cycle was repeated for 5 days. The depth of the tooth loss caused by tooth erosion (erosion depth) and maximum loss of fluorescence (Max ${\Delta}F$) were measured using the microscope and quantified light-induced fluorescence-digital, respectively. For the statistical analysis, the Kruskal-Wallis test and ANOVA were used to compare the erosion depth and Max ${\Delta}F$ of the enamel surfaces. In addition, Spearman correlations were estimated. Results: The pH of the three vitamin beverages ranged from 2.65 to 3.01, which is similar to that of the positive control group. All beverages, except mineral water, had sugar and acidic ingredients. Vitamin drinks and the positive control, Coca-Cola, caused tooth erosion lesions, and showed significant differences in erosion depth compared to mineral water (p<0.05). The vitamin beverages with low pH were associated with high erosion depth and Max ${\Delta}F$. Conclusion: Vitamin drinks have the potential to cause tooth erosion.

HVDC용 LSR/Nano Silica Composites의 IPT특성 연구 (Study on IPT Characteristics of LSR / Nano Silica Composites for HVDC)

  • 박재준
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.61-68
    • /
    • 2019
  • Only the power is converted from AC to DC, in accordance with IEC 60587 based test method, in order to develop the LSR(Liquid Silicone Rubber) insulator material for HVDC, the experiment of Inclined Plate Tracking and Erosion Resistance was conducted. A contaminant (2.5 mS/cm: ammonium chloride) was applied at a rate of 0.3 ml/min and a voltage of ${\pm}3.5kV$, and was evaluated on the basis of 60 mA/2s. The samples were prepared by dispersing LSR/Nano silica_25wt% Composites in LSR. The erosion phenomena of surface discharge and tracking due to DC polarity and negative polarity were measured by image, leakage current maximum and thermal camera. The thermal imaging camera measured the surface temperature generated by the joule heat of the leakage current due to the drying discharge and the conductive current. After the measurement, the tracking and erosion mechanisms were evaluated for erosion weight, erosion depth and erosion length. Positive and negative polarity of LSR/Nano Silica_25wt% composite Tracking and erosion results show that positive polarity is more severe than negative polarity.

모악산도립공원 등산로의 환경훼손 실태 및 이용영향에 관한 조사연구 (Study on Environmental Deteriorations of Trail and Use Impacts in Moaksan Provincial Park)

  • 김세천;박종민
    • 한국조경학회지
    • /
    • 제25권4호
    • /
    • pp.39-50
    • /
    • 1998
  • The object of this study was to examine and analyze the environmental deterioration of three major trails and around peak area of Moaksan Provincial park in 1996. Trails are mostly made up at ridgeline and the slope of them is gentle. Mean trail width is 3.6m, and total length of branch trails is 982m in survey area. The environmental deterioration is derived from trail extension. Maximum eroded depth and cross-section area loss are 89cm and 14,050cm2 respectively, and gully erosion type appears at many sites. The environmental deterioration of trails is very heavy at the sections from Khui to Moaksan peak and from Moakchong to ascent part around the peak. The entire width, branch trail, maximum depth, cross-sectional area loss and surface roughness, as the indexes of trail conditions, are significantly greater at the more heavily used trails. Amount of erosion is influenced by eroded depth, longitudinal slope, runoff influence and entire width in descending order as well as the amount of use. Safety and protection facilities on the trail such as stone and soil stairs, rope handrail, stone channel and soil ditch work are built, but they are very deficient. Bared lands about 4,900m2 and fill slopes are caused and formed by recreation activities and constructions around peak area. It is required to carry the recess system and to conserve and rehabilitate the destroyed trail sites and bare fill slopes as soon as possible, before the environmental deterioration becomes critical because of increased used amount in consequence of construction of recreation parks.

  • PDF

구형수로에서 연직 제방 및 교대 부근의 하상 세굴 (Scour Erosion Around Vertical Embankments and Abutments in a Rectangular Channel)

  • 박승우
    • 한국농공학회지
    • /
    • 제28권1호
    • /
    • pp.41-50
    • /
    • 1986
  • This paper attempts to qualitatively characterize scour erosion processes near USGS constriction type-I structures with vertical embankments and abutments. The scour dimensions and rates of sand beds around the structure models were measured in a rectangular flume. The test results showed that scour took place at a rapid rate at initial stages, which were followed by a stage of slow and general scour with greater extends. The maximum scour depth was observed near upstream corner of embankments. Empirical relationships for scour dimensions were derived, that were based on the results from a dimensional analysis of scour processes.

  • PDF

A Study on Shape and Height of Shipwaves

  • Gang, Song-Jin;Kim, Mi-Kum;Kim, Chang-Je
    • 한국항해항만학회지
    • /
    • 제33권2호
    • /
    • pp.105-110
    • /
    • 2009
  • Shipwaves am have harmful effects on ships working on the sea, in a harbour or navigational channel and caused beach erosion, seawall destruction. This study aims to investigate describe the characteristics of the wave pattern generated by an individual model ship tested at different velocities and hull forms for a given water depth and to investigate the variations at a given distance from the sailing line under the same conditions. As a result, the angles a's by model ship tests are smaller than those by real ship ones. Wave heights decreases with an increasing the mid-ship cross sectional area $A_s$. The maximum wave height and period increase rapidly in the subcritical speed, and beyond the critical speed the height and period decrease with increasing depth Froude number. And the period keeps constant with the distance from the sailing line.

침식 해석을 이용한 월 블로워 노즐의 성능 예측 (Performance Evaluation of Wall Blower Nozzle using Erosion Analysis)

  • 백재호;장일광;장용훈
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.175-182
    • /
    • 2018
  • Accumulation of coal ash at the boiler wall reduces combustion and fuel efficiency. The design of a wall blower is important to effectively remove coal ash. We present numerical results for the removal of coal ash from boiler walls of domestic coal-fired power plants, associated with the computational fluid dynamics for the flow from spray nozzle to boiler wall. The numerical model simulates an erosion process in which the multiphase fluid comprising saturated vapor and fluid water is sprayed from the nozzle, and the water particles impact the boiler wall. We adopt the Finnie erosion model for water particles. We obtain the erosion rate density as a function of nozzle angle and its injection angle. As excessive coal ash removal usually induces damage to the boiler wall, the removal operation typically focuses on a large area with uniform depth rather than the maximum removal of coal ash at a specific location. In order to estimate the removal performance of the wall blower nozzle considering several functionality and reliability factors, we evaluate the optimal injection and nozzle angles with respect to the biggest cumulative and highest erosion rates, as well as the widest range and lowest standard deviation of the erosion rate distribution.

Predicting Scour at Bridge Piers

  • Briaud, Jean-Louis
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.3-46
    • /
    • 1999
  • A new method called SRICOS is proposed to predict the scour depth z versus time t around a cylindrical bridge pier of diameter D founded in clay. The steps involved are ; 1. taking samples at the bridge pier site, 2. testing them in an Erosion Function Apparatus called the EFA to obtain the scour rate z versus the hydraulic shear stress applied $\tau$, 3. predicting the maximum shear stress r max which will be induced around the pier by the water flowing at ν Ο before the scour hole starts to develop, 4. using the measured z versus r curve to obtain the initial scour rate zi corresponding to r max , 5. predicting the maximum depth of scour zmax for the pier, 6. using zi and zmarx to develop the hyperbolic function describing the scour depth z versus time t curve, and 7. reading the z vs. t curve at a time corresponding to the duration of the flood to find the scour depth which will develop around the pier. A new apparatus is developed to measure the z vs t curve of step 2, a series of advanced numerical simulations are performed to develop an equation for the $\tau$ max value of step 3, and a series of flume tests are performed to develop an equation for the zmax value of step 5. The method is evaluated by comparing predictions and measurements in 42 flume experiments.

  • PDF

실내실험에 의한 기능을 상실한 보 철거로 인한 하도의 적응과정 분석 (Experimental analysis on the channel adjustment processes by weir removal)

  • 장창래;이경수
    • 한국수자원학회논문집
    • /
    • 제53권11호
    • /
    • pp.951-960
    • /
    • 2020
  • 본 연구에서는 실내실험을 통하여 기능을 상실한 보 철거로 인하여, 급경사가 형성된 짧은 구간에서 두부침식과 천급점 변화, 그리고 교호사주의 거동을 고려한 하도의 적응과정을 정량적으로 분석하였다. 보 상류에서 두부침식이 발생하여 천급점은 상류로 이동하였다. 실험초기에 빠르게 이동하지만, 시간이 증가하면서 이동속도가 감소하였다. 교호사주가 발달한 조건에서 이동속도는 사주가 발생하지 않은 조건에서보다 빨랐다. 세굴심은 교호사주가 발생하지 않는 조건에서 보다 발생하는 조건에서 더 깊었다. 시간이 증가할수록 최대세굴심은 하류로 이동하며, 최대세굴심의 깊이와 이동속도는 감소하였다. 무차원 최대세굴심은 상류에서 유입되는 유사가 포착되고 되메우기가 진행되면서 이동속도가 감소하였다. 무차원 되메우기 속도가 증가할수록 무차원 최대세굴심은 감소하였다. 초기에 최대세굴심이 깊은 곳에서 되메우기가 빠르게 진행되며, 최대세굴심이 얕은 곳에서는 되메우기가 느리게 진행되었다. 특히, 무차원 되메우기 속도가 5이하에서는 무차원 최대세굴심이 급격하게 감소하며, 그 이후에서는 완만하게 감소하였다.

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF