• Title/Summary/Keyword: maximum engine torque

Search Result 91, Processing Time 0.02 seconds

Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Se-Doo;Lee, Gee-Soo;Lim, Ock-Taek;Pyo, Young-Dug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

Research and Development of a Light-Duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Chon, Mun Soo;Park, Jung-Kwon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40 MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5kgfm(based on 2,000rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

  • PDF

Experimental Research on the Power Improvement by Increasing Intake pressure in a 1.4 L Turbocharged CNG Port Injection Spark Ignition Engine (1.4L 급 터보 CNG 엔진에서 흡기압력 상승에 따른 출력 증대 효과에 관한 연구)

  • Lee, Jeong-Woo;Park, Cheol-Woong;Bae, Jong-Won;Kim, Chang-Gi;Lee, Sun-Youp;Kim, Yong-Rae
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.90-96
    • /
    • 2019
  • Natural gas has been regarded as one of major alternative fuels, because of the increment of mining shale gas and supplying PNG(Pipeline Natural Gas) from Russia. Thus, it needs to broaden the usage of natural gas as the increasing its supplement. In this situation, application of natural gas on the transport area is a good suggestion to reduce exhaust emissions such as CO2(carbon dioxides) and soot from vehicles. For this reason, natural gas can be applied to SI(spark ignition) engines due to its anti-knocking and low auto-ignitibility characteristics. Recently, since turbocharged SI engine has been widely used, it needs to apply natural gas on the turbocharged SI engine. However, there is a major challenge for using natural gas on turbocharged SI engine, because it is hard to make natural gas direct injection in the cylinder, while gasoline is possible. As a result, there is a loss of fresh air when natural gas is injected by MPI (multi-point injection) method under the same intake pressure with gasoline-fueled condition. It brings the power reduction. Therefore, in this research, intake pressure was increased by controling the turbocharger system under natural gas-fueled condition to improve power output. The goal of improved power is the same level with that of gasoline-fueled condition under the maximum torque condition of each engine speed. As a result, the maximum power levels, which are the same with those of gasoline-fueled conditions, with improved brake thermal efficiency could be achieved for each engine speed (from 2,000 to 6,000 rpm) by increasing intake pressure 5-27 % compared to those of gasoline-fueled conditions.

A Study on the Control of 4WD EV (4륜 직접구동 전기자동차의 제어에 관한 연구)

  • Chong, U-Sok;Jeon, Beom-Jin;Sul, Seung-Ki;Jung, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.172-174
    • /
    • 1994
  • Due to the environmental considerations and the energy crisis, there has been a revival of electric vehicles since 1960s. Research and development work concerning with electric vehicles (EVs) was becoming more intense in last decade. As compared with conventional internal combustion engine (ICE) cars, EVs have the advantages of clean, quiet, better energy efficiency, less maintenance and improving the load factor of electric power systems. However, EVs usually have a snort running range, bad acceleration performance and high initial cost. The main reason for these shortcomings is the low figure of energy density and the high per energy cost of battery at present technology state. So it is very important to optimize the overall drive system design with respect to the maximum utilization of battery, energy, motor torque and inverter power. This paper describes a demonstration model of electric car which is driven by 4-wheel direct method using the vector control.

  • PDF

A New Switched Flux Machine Employing Alternate Circumferential and Radial Flux (AlCiRaF) Permanent Magnet for Light Weight EV

  • Jenal, Mahyuzie;Sulaiman, Erwan;Kumar, Rajesh
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.537-543
    • /
    • 2016
  • Currently, an interest in electric vehicles (EVs) exhibited by automakers, government agencies and customers make it as more attractive research. This is due to carbon dioxide emitted by conventional combustion engine that worsens the greenhouse effect nowadays. Since electric motors are the core of EVs, it is a pressing need for researchers to develop advanced electric motors. As one of the candidates, switched flux machine (SFM) is initiated in order to cope with the requirement. This paper proposes a new alternate circumferential and radial flux (AlCiRaF) of permanent magnet switched flux machines (PMSFM) for light weight electric vehicles. Firstly, AlCiRaF PMSFM is compared with the conventional PMSFM based on some design restrictions and specifications. Then the design refinements techniques are conducted by using deterministic optimization method in order to improve preliminary performance of machine. Finally the optimized machine design has achieved maximum torque and power of 47.43 Nm and 12.85 kW, respectively, slightly better than that of conventional PMSFM.

Correlation Between Knee Muscle Strength and Maximal Cycling Speed Measured Using 3D Depth Camera in Virtual Reality Environment

  • Kim, Ye Jin;Jeon, Hye-seon;Park, Joo-hee;Moon, Gyeong-Ah;Wang, Yixin
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.262-268
    • /
    • 2022
  • Background: Virtual reality (VR) programs based on motion capture camera are the most convenient and cost-effective approaches for remote rehabilitation. Assessment of physical function is critical for providing optimal VR rehabilitation training; however, direct muscle strength measurement using camera-based kinematic data is impracticable. Therefore, it is necessary to develop a method to indirectly estimate the muscle strength of users from the value obtained using a motion capture camera. Objects: The purpose of this study was to determine whether the pedaling speed converted using the VR engine from the captured foot position data in the VR environment can be used as an indirect way to evaluate knee muscle strength, and to investigate the validity and reliability of a camera-based VR program. Methods: Thirty healthy adults were included in this study. Each subject performed a 15-second maximum pedaling test in the VR and built-in speedometer modes. In the VR speedometer mode, a motion capture camera was used to detect the position of the ankle joints and automatically calculate the pedaling speed. An isokinetic dynamometer was used to assess the isometric and isokinetic peak torques of knee flexion and extension. Results: The pedaling speeds in VR and built-in speedometer modes revealed a significantly high positive correlation (r = 0.922). In addition, the intra-rater reliability of the pedaling speed in the VR speedometer mode was good (ICC [intraclass correlation coefficient] = 0.685). The results of the Pearson correlation analysis revealed a significant moderate positive correlation between the pedaling speed of the VR speedometer and the peak torque of knee isokinetic flexion (r = 0.639) and extension (r = 0.598). Conclusion: This study suggests the potential benefits of measuring the maximum pedaling speed using 3D depth camera in a VR environment as an indirect assessment of muscle strength. However, technological improvements must be followed to obtain more accurate estimation of muscle strength from the VR cycling test.

Effect of Flywheel Weight on Engine Performance for the Small Diesel Engine (Flywheel의 중량(重量)이 소형(小型) 디젤기관(機關)의 성능(性能)에 미치는 영향(影響))

  • Jung, Hae Kook;Kim, Sung Rai;Myung, Byung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.2
    • /
    • pp.143-152
    • /
    • 1988
  • This study was conducted to obtain basic data which affected engine performance of the power tiller being widely used in the rural area. Among the various factors affected engine performance, only flywheel weight was considered as the major factor in this study. Fuel consumption ratio, motoring loss, torque, vibration and mechanical efficiency of the engine tested were measured and analyzed on the four levels of flywheel weight (32.2, 29.7, 26.4, 24.2 kg). The results obtained were as follows: 1. The maximum output of 6 and 7.5 kW engine was 7.43 kW and 7.85 kW respectively. When flywheel weight was reduced from 32.2 kg to 24.2 kg, output power of the engine was increased 0.27 kW in 6 kW engine and increased 0.39 kW in 7.5 kW engine. 2. The fuel consumption ratio was decreased from 300.8 to 296.8 g/kW-hr in 6 kW engine and decreased from 313.6 to 312.8 g/kW-hr in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. 3. The mechanical efficiencies of the engine was increased from 76.1 to 76.8% in 6 kW engine and increased from 76.7 to 77.0% in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. 4. When the flywheel weight was reduced from 32.2 kg to 24.2 kg, a tendency of a little decrease of vibration at X- and Z-axis in 6 kW engine and of a little increase of vibration at Y-axis in 6 kW engine and all directions in 7.5 kW engine was observed. 5. Motoring losses was decreased from 2.33 to l.76 kW in 6 kW engine and decreased from 2.46 to 1.84 kW in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. From the above results and the flywheel weight calculated theoretically, it was recommendable that the flywheel weight should be reduced about 7 kg in 6 kW engine and about 10 kg in 7.5 kW engine, respectively.

  • PDF

Effects of Multi-stage Pilot Split Injection Strategy on Combustion and Emission Characteristics in a Single-Cylinder Diesel Engine (단기통 디젤엔진에서 다단 파일럿 분할 분사 전략이 연소 및 배기가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.692-698
    • /
    • 2020
  • This paper examines the effects of a multi-stage pilot split injection strategy on combustion and exhaust emission factors in a single-cylinder diesel engine. One analysis noted that in the single-injection condition, the maximum in-cylinder pressure and rate of heat release were highest. The pilot injection quantity was evenly divided, showing a tendency to decrease as the number of injections increased. In another injection condition, when the multi-stage pilot split injection strategy was applied, IMEP, engine torque, and combustion increased. The COVIMEP was greatest with the lowest combustion efficiency. The combustion ability was poor. In a single injection condition, the O2 concentration in the exhaust gas was the lowest and the CO2 was the highest. When the multi-stage split injection strategy was applied, the low temperature combustion process proceeded, and the oxidation rate of CO2 decreased while the emission level increased. In a single injection condition in which a locally rich mixture was formed, the HC emission level showed the highest results. A 55.6% reduction of NOx emission occurred under a three-stage pilot injection condition while conducting a multi-stage pilot split injection strategy.

Performance Evaluation of a Round Baler Attachable to Medium Agricultural Tractors (중형 트랙터용 원형베일러 성능평가)

  • Chang, Dong-Il;Chung, Sun-Ok;Cho, Byoung-Kwan;Cho, Nam-Hong
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.309-314
    • /
    • 2010
  • Bale is an operation of collecting livestock feed materials from field crop residue, and mechanization demand on the operation has been increased. Bailers imported from foreign countries such as Japan and European countries have been used, but those models showed improper performance in Korean situations. In recent years, a steel-roller type round baler attachable to medium size tractors(40 to 60 HP) for effective bale operation in Korea was developed. This study was conducted to evaluate field performance of the baler. For proper baling operation, engine speed was greater than 1,800rpm, average traction force and PTO torque were about 4kN and in a range of 380-671Nm, and maximum values were about 7kN and 3,000Nm, respectively. Performance evaluation tests for sudan grass, rice straw, and blue barley showed that field capacity was 0.59ha/h for blue barley and 0.99ha/h for sudan grass and rice straw. Bale weight, diameter, width, and bulk density were in ranges of 176.1~418.4kg, 1.07~1.12m, 1.02~1.04m, and 175.3~454.1kg/$m^3$. Noise sound level during the baling operation was 4dB greater than idle operation condition, which was considered to be ignorant.

A Study on the Propeller Thrust for a Moored Ship (계류중인 선박의 프로펠러 추력 추정에 관한 연구)

  • Ha, M.K.;Song, I.H.;Kim, D.J.;Wee, K.S.;Kim, S.W.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.50-59
    • /
    • 1997
  • Shipbuilder checks the status of main engine and propeller operation before sea trial. Generally these tests are carried out at a quay during fitting out of the ship. For these tests the operator has to estimate the maximum RPM with permissible torque and thrust to ensure the safety of the mooring line and ship. In this paper, the propeller characteristics according to the draft variation for a moored ship is inveatigated. From these tests, it is shown that shaft submergence is a dominant parameter in the propeller performance at shallow shaft submergence and that the propeller performance is dependent upon the propeller RPM when the shaft submergence is kept unchanged. In this study, a simple formula of the required thrust for a given propeller shaft submergence and propeller RPM is derived. 1be propeller thrust, which is calculated by another formula in case of dtep draft, is compared with results of bollard pull test for FPSO.

  • PDF