• Title/Summary/Keyword: maximum elimination capacity

Search Result 49, Processing Time 0.025 seconds

Optimum Structural Design of Sinusoidal Corrugated Web Beam Using Real-valued Genetic Algorithm (실변수 유전자 알고리즘을 이용한 사인형 주름 웨브 보의 최적구조설계)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.581-593
    • /
    • 2011
  • The underlying advantages of using thin-walled corrugatedwebs instead of plate girders with stiffeners are the elimination of instability problems associated with buckling of the thin-walled flat plate, and elimination of the need for transverse stiffeners, which alsoresults in economic advantages. This paper focuses on two aspects related to the structural design technique forsinusoidal corrugated web steel beams, and the optimum design of the beams using real-value genetic algorithms. The structural design process and design variables used in this optimization werecomposed with EN 1993-1-5, DASt-R015 standard and Pasternak et al. (2004), and the valid design capacity of shear buckling of the standards were compared. For the optimum structural design, the objective function, presented as the fullweight of the sinusoidal corrugated web beams, and the slenderness, member forces, and maximum deflection of the beam, were considered constraints. Finally, the simple beam under the uniform load was adopted as a numerical example, and the effective probability parameters of the genetic operators were considered to find the global minimum point.

Development of Encapsulated Media for Ammonia Removal (암모니아 가스 제거를 위한 포괄고정화 담체 개발)

  • Jeong, Mi-young;Namgung, Hyeong Kyu;Song, Ji Hyeon;Hwang, Sun-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.306-310
    • /
    • 2009
  • Packed-bed reactor for removing ammonia was tested at different loading rates. Nitrifiers for ammonia removing was encapsulated in gel media which consisted of polyethlene glycol, alginate and activated carbon. The removal efficiency was nearly 100% when ammonia loading was $12g/m^3/hr$, and the maximum elimination capacity (EC) achieved on this study was $18g/m^3/hr$. The initial microbial portion of nitrifiers in the media was about 82% and it was increased to more than 90% at the end of the operation. Short-term shock loading test was carried out to survey the stability of the media. The inlet loading rates were varied from 2 to $20g/m^3/hr$. The packed-bed reactor overcame the shock loading i.e. removal efficiency recovered rapidly from about 80% to almost 100% within 6 hrs. The results of Live/Dead cell test showed that nitrifiers maintained there activity in the encapsulated media during the test and also against ammonia shock load.

Removal Characteristics of H2S in the Biofilter Packed with Activated Carbon/Polyurethane Composite Media (활성탄/폴리우레탄 복합담체를 충전한 바이오필터에서 H2S의 제거특성)

  • Gam, Sang Gyu;Gang, Gyeong Ho;Im, Jin Gwan;Lee, Min Gyu
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • A biofiltration system using activated carbon/polyurethane composite as solid support inoculated with Bacillus sp. was developed for treating a gaseous stream containing high concentrations of H$_2$S. The effects of operating condition such as the influent H$_2$S concentration and the empty bed contact time (EBCT) on the removal efficiency of H$_2$S were investigated. The biofilter showed the stable removal efficiencies of over 99 % under the EBCT range from 15 to 60 sec at the 300 ppmv of H$_2$S inlet concentration. When the inlet concentration of H$_2$S was increased, the removal efficiencies decreased, reaching 95 and 74%, at EBCTs of 10 and 7.5 sec, respectively. The maximum elimination capacity in the biofilter packed with activated carbon/polyurethane composite media was 157 g/m$^3$/hr.

Effect of Benzene, Acetone, and Methyl Mercaptan Vapor on Photocatalytic Decomposition of Toluene Vapor (톨루엔의 광촉매 분해시 벤젠, 아세톤 및 메틸메르캅탄 증기가 미치는 영향)

  • Kam, Sang-Kyu;Jeon, Jin-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.1971-1976
    • /
    • 2014
  • In this study, the photocatalytic decomposition characteristics of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed methyl mercaptan (MM) by UV reactor installed with $TiO_2$-coated perforated plate were studied. The photocatalytic decomposition rate of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed with MM fitted well on Langmuir-Hinshelwood (L-H) kinetics equation. The maximum elimination capacity was obtained to be $628g/m^3{\cdot}d$ for single toluene, $499g/m^3{\cdot}d$ for toluene mixed with benzene, $318g/m^3{\cdot}d$ for toluene mixed with acetone, and $513g/m^3{\cdot}d$ for toluene mixed with MM, respectively. The negative effect in photocatalytic decomposition of toluene are found to be in the order of acetone>benzene>MM.

Performance of a Hollow Fiber Membrane Bioreactor for the Treatment of Gaseous Toluene (중공사막 결합형 생물반응기를 이용한 기체상 톨루엔 제거 특성 검토)

  • Son, Young-Gyu;Kim, Yong-Sik;Khim, Jee-Hyeong;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.886-891
    • /
    • 2005
  • In this study, a novel bioreactor system using a submerged hollow fiber membrane module (so called hollow fiber membrane bioreactor, HFMB) was applied to investigate feasibility and biodegradation capacity of the system for the treatment of gaseous toluene. First an abiotic test was conducted to determine the mass transfer coefficient, showing the value was similar to that obtained from a diffuser system using fine bubbles. Second, in the presence of toluene-degrading microorganisms, the HFMB was operated at different inlet toluene loading rates of 50, 100, $500\;g/m^3/hr$, and overall removal efficiencies were maintained in the range of $70{\sim}80%$. In addition, elimination capacities(EC) were increased up to $800\;g/m^3/hr$, which was substantially higher than maximum ECs for toluene reported in the biofiltration literature. Consequently, the HFMB was considered as an alternative method over other conventional VOC-treating technologies.

The Removal of Toluene by a Granular Activated Carbon Bioreactor using Yeast (Yeast와 입상활성탄을 이용한 미생물반응기의 휘발성유기화합물 분해 특성)

  • NamGung, Hyeong-Kyu;Shin, Seung-Kyu;Ahmed, Zubair;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1218-1224
    • /
    • 2008
  • A liquid culture of yeast "Candida tropicalis" was used in a fluidized bioreactor to achieve high removal efficiencies of volatile organic compounds (VOCs). In this study, granular activated carbon (GAC) was used as a fluidized material to improve adsorptive capacity as well as mass transfer of gaseous toluene, the model VOC. The GAC fluidized bioreactor demonstrated toluene removal efficiencies ranging from 50 to 80%, when inlet toluene loading varied in a range between 13.1 and 37.4 g/m$^3$-hr. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m$^3$-hr at a toluene loading of 291 g/m$^3$-hr. Transient loading experiments revealed that the removal efficiency was remained unchanged during an increased loading period, and toluene introduced to the bioreactor was first absorbed to GAC and then slowly desorbed and became available to the yeast culture. Hence the fluidized GAC helped to achieve an improved mass transfer between the gas and liquid phases, resulting in high toluene removal capacity. Consequently, the GAC fluidized bioreactor using C. tropicalis can be successfully applied for the removal of VOCs, and is a feasible alternative over conventional processes such as packed-bed biofilters.

Removal of Volatile Organic Compounds using Candida tropicalis Immobilized on Polymer Gel Media in an Airlift Loop Bioreactor (Candida tropicalis 포괄고정 담체를 적용한 Airlift Loop Bioreactor에서의 복합 휘발성유기화합물 제거)

  • NamGung, Hyeong-Kyu;Ha, Jeong-Hyub;Hwang, Sun-Jin;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.603-610
    • /
    • 2009
  • This research was performed to improve removal efficiency of toluene and methyl ethyl ketone (MEK) using Candida tropicalis, one of the yeast species. An airlift loop bioreactor (ALB) was employed to enhance the capability of mass transfer for toluene and MEK from the gas phase to the liquid, microbial phase. Polymer gel media made from PAC, alginate and PEG was applied for the effective immobilization of the yeast strain on the polymer gel media. The experimental results indicated that the mass transfer coefficient of toluene without polymer gel media was 1.29 $min^{-1}$ at a gas retention time of 15 sec, whereas the KLa value for toluene was increased to 4.07 $min^{-1}$ by adding the media, confirming the enhanced mass transfer of volatile organic compounds between the gas and liquid phases. The removal efficiency of toluene and MEK by using yeast-immobilized polymer gel media in the ALB was greater than 80% at different pollutant loading rates (5, 10, 19 and 37 g/$m^3$/hr for toluene, 4.5, 8.9, 17.8 and 35.1 g/$m^3$/hr for MEK). In addition, an elimination capacity test conducted by changing inlet loading rates stepwise demonstrated that maximum elimination capacities for toluene and MEK were 70.4 and 56.4 g/$m^3$/hr, respectively.

Removal of Malodorous Gases Emitted from a Wastewater Pumping Stations by Biological Methods (생물학적 방법에 의한 하수 중계펌프장의 악취제거)

  • 류희욱
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • To select a promising technologies for removal of odorous gases emitted from a wastewater pump station, four methods such as activated carbon (A/C) adsorption, chemical absorption (acid and alkali scrubber), and two biofilters (polyurethane (PU) and worm cast) were investigated. The average odor removal efficiencies in the PU biofilter and A/C column was over 98%, but in a worm cast biofilter and chemical absorption were below 60-80%. The removal efficiency of PU biofilter was very stable (about 98-99%) in the range of retention times of 4-36s, and a maximum elimination capacity was $1.6${\times}$10^{ 7}$ $OUm^{-3}$$h^{-1}$ Deodorization costs for an activated carbon adsorption and a biofiltration method were investigated. With increasing odor intensity, the operating cost of the A/C column increased linearly, but the operating cost of the biofilteration increased slightly. The capital cost in a biofilter is about two times higher than that in an A/C column, but the operating cost is very lower than that of in A/C column. In conclusion, the biofiltration was evaluated one of the most promising technologies to control odor in a wastewater pump station.

Soybean Wastewater Treatment by Activated Sludge Process (고농도 대두가공폐수의 처리를 위한 개선 활성슬러지법)

  • Cho, Kwon-Ik;Lee, Jeoung-Su;Lee, Tae-Kyoo;Kim, Jong-Hwa
    • Applied Biological Chemistry
    • /
    • v.45 no.1
    • /
    • pp.25-29
    • /
    • 2002
  • The kernel of wastewater treatment by activated sludge is elimination of organic substances and maintenance of well-flocculated sludge sedimentation. By the conventional activated sludge treatment, the optimum F/M ratio of soybean wastewater treatment was 0.24 (kg-BOD/kg-MLVSS day) and sludge bulking was generated at 0.48 (kg-BOD/kg-MLVSS day). To improve the treatment capacity and operation quality in higher loading of soybean wastewater, influent pH was constantly controlled by 9.0 using NaOH as a coagulant agent. In this process, higher loading up to 2.88 (kg-BOD/kg-MLVSS day) was possible and SVI was maintained under 150 without bulking. This was equivalent to 7.2 times higher than maximum permissible load of the conventional activated sludge process.

Simultaneous Biofiltration of H2S, NH3 and Toluene using an Inorganic/Polymeric Composite Carrier

  • Park, Byoung-Gi;Shin, Won-Sik;Chung, Jong-Shik
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2008
  • Simultaneous removal of ternary gases of $NH_3$, $H_2S$ and toluene in a contaminated air stream was investigated over 180 days in a biofilter. A commercially available inorganic/polymeric composite chip with a large void volume (bed porosity > 0.80) was used as a microbial support. Multiple microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) ranged from 60 - 120 seconds and the inlet feed concentration was $0.0325\;g/m^3-0.0651\;g/m^3$ for $NH_3$, $0.0636\;g/m^3-0.141\;g/m^3$ for $H_2S$, and $0.0918\;g/m^3-0.383\;g/m^3$ for toluene, respectively. The observed removal efficiency was 2% - 98% for $NH_3$, 2% - 100% for $H^2S$, and 2% - 80% for toluene, respectively. Maximum elimination capacity was about $2.7\;g/m^3$/hr for $NH_3$, > $6.4\;g/m^3$/hr for $H_2S$ and $4.0\;g/m^3$/hr for toluene, respectively. The inorganic/polymeric composite carrier required 40 - 80 days of wetting time for biofilm formation due to the hydrophobic nature of the carrier. Once the surface of the carrier was completely wetted, the microbial activity became stable. During the long-term operation, pressure drop was negligible because the void volume of the carrier was two times higher than the conventional packing materials.