• Title/Summary/Keyword: maximum density theory

Search Result 51, Processing Time 0.016 seconds

A Study on the Connectivity Modeling Considering the Habitat and Movement Characteristics of Wild Boars (Sus scrofa) (멧돼지(Sus scrofa) 서식지 및 이동 특성을 고려한 연결성 모델링 연구)

  • Lee, Hyun-Jung;Kim, Whee-Moon;Kim, Kyeong-Tae;Jeong, Seung-Gyu;Kim, Yu-Jin;Lee, Kyung Jin;Kim, Ho Gul;Park, Chan;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.4
    • /
    • pp.33-47
    • /
    • 2022
  • Wild boars(Sus scrofa) are expanding their range of behavior as their habitats change. Appearing in urban centers and private houses, it caused various social problems, including damage to crops. In order to prevent damage and effectively manage wild boars, there is a need for ecological research considering the characteristics and movement characteristics of wild boars. The purpose of this study is to analyze home range and identify land cover types in key areas through tracking wild boars, and to predict the movement connectivity of wild boars in consideration of previous studies and their preferred land use characteristics. In this study, from January to June 2021, four wild boars were captured and tracked in Jinju city, Gyeongsangnam-do, and the preferred land cover type of wild boars was identified based on the MCP 100%, KDE 95%, and KDE 50% results. As a result of the analysis of the home range for each individual, it was found that 100% of MCP was about 0.68km2, 2.77km2, 2.42km2, and 0.16km2, and the three individuals overlapped the home range, refraining from habitat movement and staying in the preferred area. The core areas were analyzed as about 0.55km2, 2.05km2, 0.82km2, and 0.14km2 with KDE 95%., and about 0.011km2, 0.033km2, 0.004km2, and 0.003km2 with KDE 50%. When the preferred land cover type of wild boar was confirmed based on the results of analysis of the total home range area and core area that combined all individuals, forests were 55.49% (MCP 100%), 54.00% (KDE 95%), 77.69% (KDE 50%), respectively, with the highest ratio, and the urbanization area, grassland, and agricultural area were relatively high. A connectivity scenario was constructed in which the ratio of the land cover type preferred by the analyzed wild boar was reflected as a weight for the resistance value of the connectivity analysis, and this was compared with the connectivity evaluation results analyzed based on previous studies and wild boar characteristics. When the current density values for the wild boar movement data were compared, the average value of the existing scenario was 2.76, the minimum 1.12, and the maximum 4.36, and the weighted scenario had an average value of 2.84, the minimum 0.96, and the maximum 4.65. It was confirmed that, on average, the probability of movement predictability was about 2.90% better even though the weighted scenario had movement restrictions due to large resistance values. It is expected that the identification of the movement route through the movement connectivity analysis of wild boars can be suggested as an alternative to prevent damage by predicting the point of appearance. In the future, when analyzing the connectivity of species including wild boar, it is judged that it will be effective to use movement data on actual species.