• Title/Summary/Keyword: maximum daily rainfall

Search Result 144, Processing Time 0.026 seconds

Effect of Rainfall Event on Water Quality in An Urban River Basin (강우사상이 도시하천의 수질오염에 미치는 영향 분석)

  • Seo, Soon-Seok;Song, Chang-June;Kim, Soo-Jun;Kim, Duck-Gil;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1799-1803
    • /
    • 2010
  • 도시하천에서 실제적으로 비점오염원 유입에 의한 수질오염은 분석이 용이하지 않기 때문에 본 연구에서는 강우사상에 따른 도시하천의 수질변화에 대한 연구를 통해 수질오염을 분석하고자 하였다. 본 연구는 도시하천에서의 강우사상이 수질오염에 막대한 영향을 끼친다는 기본적인 개념을 바탕으로 강우사상에 따른 수질변화를 분석하는 것이 목적이다. 대상지역은 이미 도시화가 많이 진행되어 도시하천의 특성을 가진 인천에서 시작해 김포에서 끝나는 굴포천 유역을 대상지역으로 설정하였으며 XP-SWMM을 이용하여 1994년~2009년의 유출량을 모의하고 교차상관분석(Cross Correlation)을 통해 수질과 유량의 상관성을 분석한 결과 6개월 간격으로 강한 음의 상관성을 갖는 것을 알 수 있었다. 또한, 최근 우리나라에서도 적용하기 위해 검토 중인 수질오염총량제에서 적용하는 TMDL(Total Maximum Daily Load)의 기본개념을 이용하여 오염원의 총량을 산정하였다.

  • PDF

Basic Monitoring Concept for Revised Unit Load on NPS (비점오염원 원단위 개정을 위한 조사연구 방향)

  • Shin, Dongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.429-433
    • /
    • 2007
  • Many researchers have made a study of NPS unit-loads and the scientific evaluation method which need for formulating and enforcing a Total Maximum Daily Load (TMDL) management system and modifying a pollutant discharge loadings function. Some showed the event mean concentration (EMC) on single land-use. For the most parts, as the results showed on multiple land-uses, those cannot be used for NPS unit-loads calculation. NPS runoff shows various phenomena depending on rainfall monitoring data, therefore sampling methods and frequency for NPS monitoring must be different from the general monitoring for water quality trend assessment.

Infinite Slope Stability Analysis based on Rainfall Pattern in Ulleung-do (울릉도지역 강우패턴을 고려한 무한사면 안정성 해석)

  • Lee, Chung-Ki;Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.11-24
    • /
    • 2018
  • The purpose of slope stability analysis is to predict the location and occurrence time considering the rainfall, topographic and soil characteristics, etc. In this study, infinite slope stability analysis considering the time distribution characteristics of the daily maximum rainfall was conducted using a model that combines a digital terrain model and a groundwater flow model. As the results of slope stability analysis, 69.1~70.0% of Fs < 1 cells are in the range of slope angle $20{\sim}50^{\circ}$ and Fs < 1 starts to appear in 2 hours for $Q_1$ model, 5 hours for $Q_2$, 7 hours for $Q_3$ and 6 hours for $Q_4$. Furthermore, the maximum number of Fs < 1 cells appear in 6 hours for $Q_1$ model, 12 hours for $Q_2$, 16 hours for $Q_3$ and 20 hours for $Q_4$, and the area of Fs < 1 is 14.3% for $Q_1$ model, 15.0% for $Q_2$, 15.6% for $Q_3$, and 16.3% for $Q_4$.

Studies on the Consumptive Use of Irrigated Water in Upland (田作物 水分消費量 調査 硏究)

  • Kim, Shi-Won;Lee, Kyong-Hi;Doh, Duk-Hyun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.47-58
    • /
    • 1984
  • The study results of the mosture consumption character and irrigation effect of tomato, red pepper and chinese cabbage, in case the soil moisture is kept with different moisture content by the soil properties(loam, sandy loam, sand), are summarized as follows: 1. The available rainfall under bare soil condition had an order of sand>sandy loam> loam and their average was 64.2%. 2. Total moisture consumption under bare soil condition had an order of loam>sandy loam>sand and their average was 4.2mm. 3. The amount of irrigated water to keep certain soil moisture under bare soil condition showed minimum in sand and maximum in loam. It is considered because the capillary phenomenon was more developed in loam. 4. Total moisture consumption of tomatoes under premature cultivation showed 925mm in maximum and had on order of loam>sandy loam>sand. In the aspect of re-irrigation point, it had an order of PF 1.5> PF 1.7>PF 2.1. In case the twenty years's drought frequency was taken into account, the target amount of irrigation water meeded for premature cultivation was 916mm and its average daily moisture consumption was 10.8mm. 5. Total moisture consumption of red pepper under open cultivation showed 1145mm in maximum and had an order of loam>Sandy loam>sand. In the aspect of re-irrigation frequency was taken into consideration the target amount of irrigation water was 1,174.8mm and its average daily moisture consumption was 8.0mm. 6. Total moisture consumption of autumn chinese cabbages was 349mm in maximum and had an order of loam>sandy loam>sand. In the aspect of re-irrigation point, it had an order of PF 1.5>PF 2.1>PF 2.7. In case the twenty year's drought frequency was taken into account, the target amount of irrigation water needed for chinese cabbage cultivation was 259.5mm and its average daily moisture consumption was 6.5mm. 7. It is effective to keep the soil moisture of tomato from PF 1.5 to PF 2.1 in loam and the soil moisture control was effective in sandy loam than red pepper and chinese cabbage. In sand, the production was severaly decreased and the re-irrigation point of PF 1.5 was effective.

  • PDF

Analysis of Time Series Models for Ozone Concentration at Anyang City of Gyeonggi-Do in Korea (경기도 안양시 오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.604-612
    • /
    • 2008
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.

Hydrogeochemical Environmental Research in Nitrate Contamination in Alluvial Fan Area Groundwater in Tsukui, Central Japan (일본 츠꾸이 선상지 지하수의 질산성 질소 오염에 대한 수문지구화학적 연구)

  • Okazaki, Masanori;Ham, Young-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.431-435
    • /
    • 2004
  • A nitrate-contaminated groundwater was hydrogeochemically investigated to estimate the factors controlling groundwater quality in an alluvial fan area. Even though monthly groundwater levels increased with monthly rainfalls, the monthly $NO_3^--N$ concentrations in groundwater showed a small variation, mostly exceeding a maximum contaminant level of 10 mg $L^{-1}$ in environmental quality standards for groundwater during 2003. The 2003 annual groundwater recharge was 1,730 mm =20,056 mm-18,326 mm. Where 20,056 mm and 18,326 mm are annual sum of daily increase and decrease in ground water level. However, the annual sum of increase in ground water level (20,056 mm) was approximately 10 times higher than annual rainfall. Moreover, the annual sum of daily ground water level decrease (-18,326mm) showed that a large amount of groundwater was discharged with $NO_3^-$-contamination. Hydrogeochemically, a large amount of groundwater input and output through the alluvial fan area were observed after rainfall with a considerably high concentration of $NO_3^-$. Consequently, this alluvial fan area including forest area reflects on the evidence under the condition of 'nitrogen excess' or 'nitrogen saturation'. In addition, such a large amount of groundwater outflow can cause environmental damage in surface water, associated with $NO_3^-$- contamination. This study also expects that this hydrogeochemical data will be useful for water management.

Effect of R-Z Relationships Derived from Disdrometer Data on Radar Rainfall Estimation during the Heavy Rain Event on 5 July 2005 (2005년 7월 5일 폭우 사례 시 우적계 R-Z 관계식이 레이더 강우 추정에 미치는 영향)

  • Lee, GyuWon;Kwon, Byung-Huk
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.596-607
    • /
    • 2012
  • The R-Z relationship is one of important error factors to determine the accuracy of radar rainfall estimation. In this study, we have explored the effect of the R-Z relationships derived from disdrometer data in estimating the radar rainfall. The heavy rain event that produced flooding in St-Remi, Quebec, Canada has been occurred. We have tried to investigate the severity of rain for this event using high temporal (2.5 min) and spatial resolution ($1^{\circ}$ by 250 m) radar data obtained from the McGill S-band radar. Radar data revealed that the heavy rain cells pass directly over St-Remi while the coarse raingauge network was not sufficient to detect this rain event. The maximum 30 min (1 h) accumulation reaches about 39 (42) mm in St-Remi. During the rain event, the two disdrometers (POSS; Precipitation Occurrence Sensor System) were available: One used for the reflectivity calibration by comparing disdrometer Z and radar Z and the other for deriving disdrometric R-Z relationships. The result shows the significant improvement with the disdrometric reflectivity-dependent R-Z relationships against the climatological R-Z relationship. The bias in radar rain estimation is reduced from +12% to -2% and the root-mean squared error from 16 to 10% for daily accumulation. Using the estimated radar rainfall rate with disdrometric R-Z relationships, the flood event was well captured with proper timing and amount.

A Study on Yongin -Ansung Landslides in 1991 (1991년 용인 -안성 지역 산사태 연구)

  • Park, Yong-Won;Kim, Gam-Rae;Yeo, Un-Gwang
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.103-118
    • /
    • 1993
  • This paper presents the results of investigation of the rainstorm induced landslides occurred in the districts of Yongin, Ansung and Osan on July 21st 1991. More than two thousand and sirs hundred landsilides took place during or after a 3-t hours heavy rainfall and about 466 ha mountain slopes were affected by slope failures. The result of study on the effect of-iainfall on landslides shows that landslides began to occur where daily and maximum hourly rainfall exceeded 114mm and 40mm respectively, and all districts (myun) where maximum hourly rainfall exceeded 62mm were affected by landslides. The morphological study on landslides on Talbongsan area reveals that, by Walker's classi fication using D IL(failure depth ratio), 50% of the landslides were classified as flows, 20% of them as translational slides, and 30% were between flow and slide and there were few rotational slides. Over 90% of landslides tookplace at slopes of 20$^{\circ}$-40$^{\circ}$ in slope and 50m or shorter in length And more than 50% of the crown of slides locates at higher than 0.7 times of slope hight. Any differences between the kinds of tree in landslide resisting effects are shown in this case.

  • PDF

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.