• Title/Summary/Keyword: maximum absorption wavelength

Search Result 145, Processing Time 0.024 seconds

The Effect of Natural Mordants on the Silk Fabrics Dyed with Green Tea Extracts(I) - Analysis of Natural Mordants and the Effect on Color Changes - (녹차 추출액 염색 견포의 천연 매염제 처리 효과(I)-천연 매염제 분석 및 색상 변화를 중심으로-)

  • 최석철;정진순;천태일
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.15-22
    • /
    • 1999
  • This study investigated the mordanting effect of natural mordants such as camellia ash, bean chaff ash and pyrolignite of iron(Iron(II) Acetate) on silk fabrics dyed with green tea extracts. Experimental variables include the conditions of extraction and dyeing, and types of natural mordants. Inorganic ion contents In natural mordants were analysed by Induced Coupled Plasma Atomic Emission Spectrometer. In the ash Al, Fe, Si and Mn were in % unit, Cr and Ni were detected in ppm unit, and in the aqueous extracts of the ash all the metal ions were in ppm unit. On the other hand, fairly high content of Al(2.13% ) in camellia ash extract and Fe(7.91% ) in the aqueous extracts of pyrolignite iron were detected. The absorbance intensity of green tea extracts in UV-Visible spectrum increased with the temperature and time of extraction. The maximum absorption wavelength of the extracts appeared at 272.5nm and 210.5nm. The US values of silk fabrics dyed with green tea extracts were increased with temperature and time of dyeing. Surface color of silk fabric dyed with green tea extracts was 9.1YR, but it was changed from 7.9YR to 7.5YR by camellia ash extract and 7.4YR to 6.4YR by bean chaff ash extract with increase in mordant concentration. Pre-mordanted and post-mordanted fabrics with pyrolignite of iron were changed from 1.4YR to 1.1R and 7.2P to 4.2P, respectively.

  • PDF

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.

Dyeing Fastness and Functional Properties of Cotton Dyed with Astringent Persimmon Juice

  • Jung, Jin-Soun
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.27-38
    • /
    • 2019
  • I reviewed about dyeing fastness and functional properties of the non-mordant dyed cotton and iron mordant dyed cotton with astringent persimmon juice. In the UV-VIS spectrum of astringent persimmon juice, the maximum absorption wavelength of the juice was 272.0 nm, which was a characteristic peak of tannin. In dyeing fastness, light fastness of the non-mordant dyed cotton was a little low at grade 2~3. But by the iron mordant treatment, the light fastness was good at grade 4. Dry cleaning fastness to discoloration and contamination was excellent at grade 4~5 for both the non-mordant dyed cotton and iron-mordant dyed cotton. Their rub fastness were grade 3 and grade 2~3 respectively, in the dry condition, and grade 2~3 and grade 3 respectively, in the wet condition. In the perspiration fastness of the non-mordant dyed cotton, the discoloration from acidity and alkalinity was grade 3~4 and grade 3, respectively, and contamination from acidity and alkalinity was relatively good at grade 4. Meanwhile, in the perspiration fastness of the non-mordant dyed cotton, discoloration from acidity and alkalinity was fair, both recording grade 3~4, and contamination from acidity and alkalinity was very good, both recording grade 4~5. In the ultraviolet protection effect of the non-mordant dyed cotton and iron-mordant dyed cotton, the ultraviolet protection factor was both 50+, both of which showed an excellent ultraviolet blocking effect. And the protection rate of UV-A appeared 98.4% and 99.1%, respectively, and the protection rate of UV-B showed 98.7% and 99.2, respectively. In addition, both exhibited an excellent deodorization rate over 99.9% or more, irrespective of the passage of time. Also, both showed an excellent antimicrobial activity over 99.9% or more against Staphylococcus aureus and Klebsiella pneumoniae.

Ultrasonic relaxation associated with the complex formation of benzoic acid derivative and β-cyclodextrin (벤조산 유도체와 베타 사이클로덱스트린의 복합체 형성반응에 의한 초음파 완화)

  • Park, Shin;Bae, Jongrim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.387-393
    • /
    • 2017
  • The dynamic interactions between benzoic acid derivative ($pH{\approx}7.0$)(guest) and ${\beta}$-cyclodextrin (${\beta}$-CD)(host) were investigated in an aqueous solutions in terms of ultrasonic absorption in the frequency range 0.2 MHz ~ 50 MHz with emphasis on the low-frequency range below 1 MHz at $25^{\circ}C$. We show that the interaction of ${\beta}$-CD and benzoic acid derivative complies with a typical spectrum of a single relaxation process around a few MHz. The ultrasonic relaxation observed in these solutions was due to a perturbation of a chemical equilibrium related to a reaction of an inclusion complex formed by the host and guest. The rate constant ($k_b=7.48{\times}10^6M^{-1}s^{-1}$) and equilibrium constant ($K=68.6M^{-1}$) were determined from the concentration dependences of benzoic acid on the relaxation frequency. The standard volume change (${\Delta}V=10.6{\times}10^{-6}m^3mol^{-1}$) of the reaction was also computed from the maximum absorption per wavelength. It was found that the hydrophobicity of guest molecules played an important role in the formation of the inclusion complex.

Construction and operational characteristics of a Ultra-Short pulse Cr4+:YAG laser (극초단 펄스 Cr4+:YAG 레이저의 제작 및 동작 특성)

  • Lee Bong Yeon;Lee Dong Han;Lee Chi Weon;Yoon Seok Beom;Choo Han Tae
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.455-460
    • /
    • 2004
  • We have developed a mode-locked ultra-short pulse C $r^{4+}$:YAG laser, as well as a continuous wave C $r^{4+}$:YAG laser. The laser was pumped by a Nd:YAG laser and its characteristics were investigated. In continuous wave mode, we obtained as much as 600 mW at 1.436 ${\mu}{\textrm}{m}$ with pumping power of 6 W, by using an output coupler with a reflectivity of 98%. The power slope efficiency was 10%, when the gain medium was cooled to 19$^{\circ}C$. The tuning range was varied from 1.39 ${\mu}{\textrm}{m}$ to 1.55 ${\mu}{\textrm}{m}$ and the maximum power was 400 mW at 1.492 ${\mu}{\textrm}{m}$ with a 3-plate birefringent filter. The C $r^{4+}$:YAG laser was mode-locked by a Kerr lens mode locking method. Mode locking at 1.436 ${\mu}{\textrm}{m}$was initiated by slightly rocking a mirror mount. But the pulses were very unstable because of the strong water absorption at this region. So we shifted the lasing wavelength to 1.492 ${\mu}{\textrm}{m}$ by using a 3-plate birefringent filter. Then we obtained stable state mode-locking with the maximum average power of 280 mW for a pumping power of 6 W. The pulse width of 43 fs was measured using an autocorrelator and the repetition rate was 104.5 MHz.

Extraction Characteristics of Red Flower Cabbage Pigment (꽃양배추 색소의 추출특성)

  • Lee, Jang-Wook;Lee, Hyang-Hee;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.149-152
    • /
    • 2001
  • Extraction characteristics of anthocyanin pigment from red flower cabbage(Brassica oleracea L. var. acephala) as a new source of natural food colorant were investigated. The pigment extracted from red flower cabbage showed the characteristic bathochromic shift of the maximum wavelength of light absorption(${\lambda}_{max}$) as pH of the solution changed from pH 1 to 12. As the concentration of citric acid in the extraction solvent increased, extraction rate and total optical density(TOD) of the extract increased. Maximum TOD was obtained by using the extracting solvent including $0.8{\sim}1.0%$ citric acid and stable pigment solution was obtained by using the extracting solvent including $10{\sim}20%$ ethanol in distilled water. As a result, 10% ethanolic solution with 0.8% citric acid was decided as the optimum extraction solvent for the anthocyanin pigment from red flower cabbage. Within the experimental ranges, the extraction rate increased and therefore extraction time decreased as the extraction temperature increased. The times to reach a certain value of TOD i.e., 2.1 were 24, 8, 4 and 2 hours at extraction temperature of 5, 20, 40 and $60^{\circ}C$, respectively.

  • PDF

Bioremediation on the Benthic Layer in Polluted Inner Bay by Promotion of Microphytobenthos Growth Using Light Emitting Diode (LED) 1. Effects of irradiance and wavelength on the growth of benthic diatom, Nitzschia sp. (발광다이오드(LED)를 이용한 저서미세조류의 성장촉진에 의한 오염해역 저질환경개선 1. 저서규조류 Nitzschia sp. 성장에 영향을 미치는 광량과 파장)

  • Oh, Seok-Jin;Park, Dal-Soo;Yang, Han-Soeb;Yoon, Yang-Ho;Honjo, Tsuneo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.93-101
    • /
    • 2007
  • In order for bioremediate the benthic layer in polluted inner Bay, the effects of irradiance and wave-length irradiated from light emission diode (LED) on the growth of benthic diatom Nitzschia sp. (Hakozaki Bay strain of Japan) were investigated. The Nitzschia sp. was cultured under blue LED (450 nm), yellow LED (590 nm), red LED (650 nm) and fluorescent lamp (mixed wavelengths). At $25^{\circ}C$ and 30 psu, the growth of Nitzschia sp. showed its peak at $20\;{\mu}mol\;m^{-2}\;s^{-1}$ (blue LED) and $40\;{\mu}mol\;m^{-2}\;s^{-1}$ (fluorescent lamp), and was inhibited at the irradiance higher than that irradiance. Nitzschia sp. in yellow LED and red LED is fitted by a rectangular hyperbolic curve because no photoinhibition was observed under maximum irradiance used in this study. The irradiance-growth curves were described as ${\mu}=-0.46{\exp}(1-I/6.32)+0.46-0.00043I,\;(r^2=0.98)$ under blue LED, ${\mu}=0.42(I+7.87)/(I+58.9),\;(r^2=0.99)$ under yellow LED, ${\mu}=0.39(I+3.39)/(I+21.6),\;(r^2=0.94)$ under red LED, ${\mu}=-0.38{\exp}(1-I/7.23)+0.38-0.00016I,\;(r^2=0.96)$ under fluorescent lamp. Maximum specific growth rate of blue LED, yellow LED, red LED and fluorescent lamp was $0.44\;day^{-1},\;0.42\;day^{-1},\;0.39\;day^{-1}$ and $0.37\;day^{-1}$, respectively. The absorption coefficient ($a_{ph}$) of Nitzschia sp. was similar under all the wavelengths (400 nm-700 nm), although maximum $a_{ph}$ was $0.0224\;m^2\;mg\;chi.\;{\alpha}^{-1}$ in 472 nm and $0.0179\;m^2\;mg\;chi.\;{\alpha}^{-1}$) in 663 nm. The results may indicate the possibility of environmental improvement around the benthic layer in polluted coastal area because microphytobenthos growth is stimulated by means of irradiated blue LED at the benthic boundary layer during both autumn and winter, and yellow LED, which might have been suppressed growth of harmful algae, at the layer during both spring and summer.

  • PDF

Phosphate Adsorption-Desorption of Kaolinite KGa-2 (Source Clay) (카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성)

  • Cho, Hyen-Goo;Choi, Jae-Ho;Moon, Dong-Hyuk;Kim, Soo-Oh;Do, Jin-Youn
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • The characteristics of phosphate adsorption-desorption on kaolinite was studied by batch adsorption experiments and detailed adsorbed state of phosphate on kaolinite surface was investigated using ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectroscopy. The phosphorous contents were measured using UV-VIS-IR spectrophotometer with 820 nm wavelength. The adsorbed P was generally increased with increasing pH value in the range of pH 4 to pH 9, however it is not distinct. Moreover the adsorbed P was significantly changed with different initial phosphate concentration. The adsorption isotherms were well fitted with the Langmuir equation, Temkin equation, and Freundlich equation in descending order. The maximum Langmuir adsorption capacity of kaolinite KGa-2 is 232.5 ($204.1{\sim}256.5$) mg/kg and has very higher value than that of kaolinite KGa-1b. Most of adsorbed phosphate on kaolinite were not easily desorbed to aqueous solution, but might fixed on kaolinite surface. However it needs further research about the exact desorption experiment. It was impossible to recognize phosphorous adsorption bands on kaolinite in ATR-FTIR spectrum from kaolinite bands themselves, because the absorption peaks of phosphorous have very similar positions with those of kaolinite, and the intensities of the former were very weak in comparison with those of the latter.

Determination of p-Anisic Acid and Methylparaben by Using High Performance Liquid Chromatography (HPLC를 이용한 p-아니식애씨드와 메칠파라벤의 분리 분석법 개발)

  • Kim, Il Hyun;Ryu, De Hun;Kim, Young Soo;Jung, Eun Sun;Park, Deok Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.359-364
    • /
    • 2014
  • In this study, we developed a HPLC method for the separation and analysis of methylparaben and p-anisic acid, which are commonly used as a synthetic preservative and natural preservative, respectively. Methylparaben and p-anisic acid have same molecular weight (152.15 g/mol), similar structure and same maximum absorption wavelength (250 nm), thus they showed same retention time (RT) value (13.3 min) in HPLC experiment. We observed that two substances are separated on C18 column after methylparaben was derivatized selectively through the acetylation reaction. Instead, RT of the acetylated methylparaben was moved to 23.9 min from 13.3 min. The average retention time was $23.9{\pm}0.1min$ and peak area values was $5042882{\pm}4778$. In addition it showed a high linearity in the calibration curve with a correlation coefficient (R2) of 0.9999658. Detection and quantitation limits were $1.47{\mu}g/mL$ and $4.44{\mu}g/mL$, respectively. In conclusion, the developed method can be useful for separation and analysis of preservatives with similar structure in cosmetic fields.

Growth and Scintillation Characteristics of CsI(Br) Single Crystals (CsI(Br) 단결정의 육성과 섬광특성)

  • Oh, M.Y.;Jung, Y.J.;Lee, W.G.;Doh, S.H.;Kang, K.J.;Kim, D.S.;Kim, W.;Kang, H.D.
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.341-349
    • /
    • 2000
  • CsI(Br) single crystals doped with 1, 3, 5 or 10 mole% $Br^-$ ions, as an activator, were grown by Czochralski method. The lattice structure of grown CsI(Br) single crystal was bcc and its lattice constant was $4.568\;{\AA}$. The absorption edge of the CsI(Br) single crystals was observed at 243 nm. The spectral range of the luminescence excited by 243 nm of wavelength was $300{\sim}600\;nm$, and its peak emission appeared at 440 nm. The luminescence intensity was maximum when CsI(Br) was doped with 3 mole % $Br^-$ ions. The energy resolutions of the CsI(Br) scintillator doped with 3 mole % $Br^-$ ions were 15.0% for $^{137}Cs$(662 keV), 13.1% for $^{54}Mn$(835 keV), and 18.0% and 6.3% for $^{22}Na$(511 keV and 1275 keV), respectively. The decay curves had fast and slow components, and the fast component was about 41 ns independent on the concentration of the $Br^-$ ions. The time resolution of CsI(Br) scintillators decreased with increasing of the concentration of $Br^-$ ions.

  • PDF