• Title/Summary/Keyword: maximum absorption wavelength

Search Result 145, Processing Time 0.03 seconds

Effect of Dyeing Bath, Mordanting and Chitosan Treatment on the Dyeing of Natural Proteinic Fabrics Using African Marigold(Tagetes erecta L.) Petals Extract (African Marigold의 카로티노이드계(系) 색소(色素)에 의한 단백질섬유(蛋白質纖維) 염색(染色)에서 염욕(染浴)의 pH, 매염제(媒染劑), Chitosan 처리(處理)에 의한 염색효과(染色效果))

  • Kim, Kyung-Sun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.11 no.2
    • /
    • pp.92-101
    • /
    • 2007
  • This research was carried out following the preceding research on natural cellulose fabrics dyed with extract of fresh african marigold petals. Dyeability on fabrics was tested by dyeing with wool and silk which are natural protein fibers. Dyeing tests were carried out under different pH of the dye solution and mordants, examining the changes in the surface color, K/S value, and maximum absorption wavelength. The probability of improving dyeability was investigated by pre-mordanting with pre-treated chitosan. Wool fabrics showed color tone of medium or less saturation and brightness, in dark yellow color series. An orange color of high saturation was only obtained by tin mordanting. Wool showed higher K/S value than cellulose fibers. In summary, marigold dye has more affinity for protein fibers. It showed better dye effect in wool than silk. The chitosan pre-treatment and pre-mordanting lowered the K/S value of wool, which showed that chitosan pre-treatment does not improve dye uptake. However, different from the dyeing carried out by pre-mordanting without pre-treatment with chitosan, more diversified colors could be obtained by mordants. Therefore, for the dyeing natural protein fibers with marigold extract, post-mordanting does not require chitosan pre-treatment. However, pre-mordanting with chitosan pre-treatment could implement diverse colors. Considering its dyeing behaviors which are similar in both natural cellulose and protein fibers, african marigold extracts can be evaluated as a stable and highly practical dye.

Biodegradation of the Commercial Phenoxy Herbicide 2,4-D by Microbial Consortium (미생물 컨소시엄에 의한 시판 페녹시계 제초제 2,4-D의 생물분해)

  • 오계헌;김용석
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.469-474
    • /
    • 1994
  • The purpose of the work was to evaluate the feasibility of a biological treatment process for the phenoxy alkanoic herbicide 2,4-D(2,4-dichlorophenoxyacetic acid) as a commercial pesticide. The phenoxy herbicide was 2,4-D amine salts which contained 40%(vol/vol) 2,4-D and 60%(vol/vol) solvent. A microbial consortium has been derived by enrichment with 2,4-D. The consortium utilized 2,4-D as the sole source of carbon and energy. Optimal pH on the 2,4-D degradation was 7.0 in this experiment. As concentrations of 2,4-D were increased, the degradation by microbial consontium became inhibited. The amendment with yeast extract and ascorbic acid accelerated the degradation of 2,4-D. High performance liquid chromatography methodology was used to measure 2,4-D and it also resolved 2,4-DCP(2,4-dichlorophenol), the corresponding phenol as intermediate. Gas chromatography-mass spectrometry was used for preliminary identification of the intermediate 2,4-DCP. UV scans of spent cultures showed that the maximum absorption of 2,4-D at the wavelength of 283 nm was decreased toward the end of incubation, but the consortium displayed no detectable spectral changes or peak shifts in the UV absorbance.

  • PDF

Components of Pine Needles Extract and Functionality of the Dyed Fabrics (솔잎 추출물의 성분 분석 및 염색물의 건강안전 기능성 평가)

  • Joen, Mi-Sun;Park, Myung-Ja
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.2
    • /
    • pp.371-381
    • /
    • 2010
  • The pine needles can be used for four seasons in normal living and it can be taken friendly everywhere as it is distributed over 50% in Korea. The pine needles consist of vitamins, protein, minerals, essential oil and enzyme related to antimicrobial activity. It has effect like high blood pressure, neuralgia and hanged over by terpene, glucokinin, rutin, apigenic acid and tannin. Also the extract of them can be used for dyeing of fabrics. However, the extract components and effects of them are not well known yet. Therefore, the purpose of this study was to investigate the volatile components of the pine needles extract and functionality. The pine needles extract was dyed into various fabrics(nylon, silk, wool and soybean) and mordanted with Al, Cu, Cr, Fe and Sn. The extracted aroma compounds were compared by gas chromatography-mass spectrometry. The major volatile compounds of pine needles verified by using SPME were alpha-pinene, beta-pinene, beta-phellandrene, caryophyllene, ethanon, benzen. A total of 15 compounds were identified by using the SPME fibers. In the UV-visible spectra, the maximum absorption of wavelength of the pine needles ethanol extract appeared at 460, 630nm for chlorophyll component and at 237, 281nm for tannin component with the pine needles distilled water extract. Most of sample showed high antibacterial effect in none mordant but wool fabric showed high antibacterial effect in mordants. The result of UV block test showed a superior ability of blocking ultraviolet ray infiltration in all sample.

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Isolation and Physicochemical Properties of Carotenoid Pigments from Orange Peels (감귤 과피 Carotenoid 색소의 분리 및 이화학적 성질)

  • Shim, Ki-Hwan;Sung, Nack-Kie;Kan, Kap-Suk;Choi, Jine-Shang;Jang, Chi-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.143-149
    • /
    • 1994
  • Carotenoids isolated from orange peels were determined physicocohemical properties with TLC, UV-spectrophotometer and HPLC etc., and the results were as follows . Maximum absorption wavelength of the isolated carotenoids was 415nm when the result was similar to $\beta$-carotene as 423nm. Eight spots were obtianed from TLC, and identified lutein, lycopene, $\alpha$-carotene and $\beta$-carotene with HPLC. The effect pH during the storage period of isolate carotenoids, the period when the amount of pigment retention was over 50% in pH 5, 6 and 7 , after 10 days . The amount of pigment retention was lower in control than in treatment of sugars such as fructose, glucose and sorbitol , but sucrose was similar to the control, Isolated carotenoids were stable to ascorbic acid, and the amount of pigment retention was over 70% after 10 days. The amount of pigment retention in the effect oforganic acid was higher in treated citric acid , lactic acid and tartaric acid than in control, but lower in treated maleic acid and succinic acid. Isolated carotenoids were stable at 50 $^{\circ}C$, and the amount of pigment retention was over 50% at 10$0^{\circ}C$.

  • PDF

Indium doped ZnO:Al thin films prepared by pulsed laser deposition for transparent conductive oxide electrode applications (펄스 레이저 방법으로 증착된 투명 산화물 전극용 인듐이 도핑된 ZnO:Al 박막)

  • Xian, Cheng-Ji;Lee, Chang-Hyun;Lee, Ye-Na;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.27-27
    • /
    • 2008
  • The different concentration Indium doped ZnO:Al films were grown on glass substrates (Corning 1737) at $200^{\circ}C$ by pulsed laser deposition. The indium doping in AZO films shows the critical effect on the crystallinity, resistivity, and optical properties of the films. The AZO films doped with 0.3 atom % indium content exhibit the highest crystallinity, the lowest resistivity of $4.5\times10^{-4}\Omega$-cm, and the maximum transmittance of 93%. The resistivity of the indium doped-AZO films is strongly related with the crystallinity of the films. The carrier concentration in the indium doped-AZO films linearly increases with increasing indium concentration. The mobility of the AZO films with increasing indium concentration was reduced with an increase in carrier concentration and the decrease in mobility was attributed to the ionized impurity scattering mechanism. In an optical transmittance, the shift of the optical absorption edge to shorter wavelength strongly depends on the electronic carrier concentration in the films.

  • PDF

Quantification of Glycerol by Malachite Green Fading Phenomenon: Application in Reaction By-Product of Biodiesel (말라카이트 그린의 색엷음 현상을 이용한 글리세롤의 정량: 바이오디젤 내 반응물 분석의 적용 가능성)

  • Lee, Mi-Hwa;Lee, Young-Chul;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.471-476
    • /
    • 2011
  • Nowadays biodiesel (fatty acid methyl ester, FAME) has been becoming an important issue as a desired alternative of energy products because of non-toxic, biodegradable properties, and lower exhaust emissions. During esterification of fatty acids or transesterification of oils and fats with short chain alcohols by the alkali-catalyzed methanolysis, FAME and unrefined glycerol are generated. Quantification of glycerol as a by-product is important because of a determinant of biodiesel quality. However, the glycerol analysis by gas chromatography (GC) method has laborious works with sample preparation, long time and cost of sample analysis. Thus, there is a need to analyze glycerol more simply. Herein we demonstrate that the colorimetric assay for glycerol analysis conducted by UV-vis spectrophotometer at the wavelength 617 nm whose peak is maximum intensity of malachite green, resulting in the red-shift occurred proportionally as a function of glycerol amount. Thus, it is considered the solvent media for malachite green fading for biodiesel production: (1) water, (2) MeOH, and (3) EtOH. The resulting findings show that the peak intensity at 617 nm in glycerol-malachite green mixture had a relationship between glycerol concentration and degree of peak shift as increase in pure glycerol concentration approximately at pH 7.0. However, when it was measured the unrefined glycerol concentration by diluting and adjusting with water to buffer (pH 7.0), it was not observed the absorption peak at 617 nm because of impurities and OH ions. In case of glycerol from biodiesel production factories, glycerol concentration could be successfully measured.

Dyeability and Colorfastness of Knitted Fabrics with Natural Dye PinuxTM (Part I)

  • Wang, Geom-Bong;Song, Kyung-Hun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.12
    • /
    • pp.1477-1485
    • /
    • 2011
  • Dyeability and colorfastness of the blended knits of cotton/rayon (40/60; C/R) and wool/tencel (10/90; W/T) are examined using the natural dyestuff ($Pinux^{TM}$) manufactured from Pinus radiata pine bark extract. In addition, pre-treatments (such as bleaching, mercerization and cationization) are performed to improve dyeability and colorfastness. The $Pinux^{TM}$ powder dyestuffs produced by Pinux Co., Ltd. are used as dyestuffs and their properties are examined for dyeing concentration (0.5-2% (owb)), dyeing time (30-120 minutes) and dyeing temperature (30-$90^{\circ}C$). Dyeability is evaluated with K/S value at 400nm, which is the maximum absorption wavelength for $Pinux^{TM}$. The results show the dyeability of W/T sample containing protein fiber with $Pinux^{TM}$ is superior to all cellulose fiber C/R. A concentration of dyestuff greater than 1.5% (owb), dyeing time 120 minutes and dyeing temperature of $90^{\circ}C$ are the most optimized conditions. It shows that the dyeability of C/R and W/T samples are high in the condition of an acid-dyeing bath and that dyeability highly declined in alkaline bath due to the instability of the proanthocyanidin pigment. After analyzing the effect of bleaching, mercerizing and cationizing (as pre-treatments on dyeability) it was concluded that the dyeability of the C/R sample was enhanced by mercerization but no significant effect by cationization. However, the simultaneous treatment of cationizing and dyeing resulted in far improved dyeability compared to dyeing after cationizing pre-treatment. As for the W/T sample, the effect of cationization was more prominent than the C/R sample. Colorfastness to color changes in the control W/T sample was higher than that of C/R's level 1-2, and it increased to Level 2 when bleaching pre-treatment was given and when a simultaneous cationizing treatment was adopted to the dyeing process. Colorfastness to light in W/T control sample resulted in Level 3 and further increased to an excellent Level of 4 with bleaching and simultaneous cationizing during dyeing process.

Synthesis of Novel Carbazole-based Blue Light-emitting Copolymers Containing (Diphenylene)vinylene Pendants (디페닐렌비닐렌 치환기를 가진 카바졸계 청색발광 공중합체 합성)

  • Kim, Woo Yeon;Yoon, Keun-Byoung
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.736-743
    • /
    • 2013
  • Novel carbazole based copolymers were synthesized by Suzuki coupling polymerization. (Diphenylene)vinylene and n-octyl was introduced to carbazole as pendants for reducing band gap and improving solubility, respectively. Thermal, photoluminescence and electro-luminescence of copolymers were studied for applying the emitting layer of polymer light emitting diode (PLED). Maximum UV-vis absorption and photoluminescence (PL) emission wavelength of copolymers showed 333~340 nm and 409~464 nm in solution state, respectively. The relative quantum yield using 9,10-diphenylanthracene as a reference was 25.8%. These copolymers exhibited high thermal stability ($T_d$ = $350^{\circ}C$) and good film forming ability. Good luminance was obtained at voltages lower than 8 V and the onset voltage was observed at 4.0 V.

Synthesis and Characteristic of Polythiophene Containing Electron Withdrawing Group (Electron Withdrawing Group을 함유한 Polythiophene의 합성과 특성에 관한 연구)

  • Hong, Hyeok-Jin;Han, Sien-Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.539-545
    • /
    • 2012
  • 3-(2-benzotriazolovinyl)thiophene (BVT) was synthesized by the connection of the thiophene with the electron-withdrawing group, benzotriazole, through the vinylene. Its structure was confirmed by FT-IR, $^1H$-NMR, $^{13}C$-NMR and 2D hetero-cosy spectroscopy. Both BVT and 3-octylthiophene (OT) were copolymerized and showed an average molecular weight of 12000 (PDI 2.67) and 15000 (PDI 2.55), respectively. The copolymers were dissolved in the organic solvent such as chloroform, THF, TCE, etc. The mole ratios of BVT and OT in the synthesized copolymers were confirmed as 1 : 1.8 and 1 : 2.8 from $^1H$-NMR spectra. The UV-vis maximum absorption of copolymers appeared at the wavelength of 470 nm and 465 nm and the photoluminescence at ${\lambda}_{max}$ = 662 nm and 641 nm correspond to red-orange light. The band gaps of copolymers at 1.96 eV and 2.02 eV were found to be higher than those of poly(3-octylthiophene). The HOMO energy levels of the copolymers decreased overall in comparison with those of poly(3-octylthiophene), but the overall LUMO energy level increased.