• 제목/요약/키워드: maximum Von-Mises stress

검색결과 209건 처리시간 0.028초

커넥팅로드 강건 설계 방안 (Robust Design of Connecting Rod)

  • 한문식;양철호
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.142-147
    • /
    • 2014
  • Finite element analysis along with DOE scheme has been performed to obtain robust design of connecting rod assembly. An analysis was conducted with five loading steps. Fatigue analysis was done using commercial software FEMFAT and fatigue safety factors at the interested regions such as shank area of small end and big end were calculated. 27 design cases using 3 factors with 3 levels are constructed by design of experiment. Each case is simulated to find the most influential factors. Response for this study, maximum Von-Mises stress, has been used to determine main factors of connecting rod assembly. Among the 3 factors, compression load affected the response greatly. However, bolt assembly load and width of shank flat area showed a little influence to the response. Interaction effects among factors considered did not occur. Connecting rod assembly considered in this study showed its sensitivity to the noise factor such as compression load rather than design factor such as width of flat shank area.

복합공구대 디스크임계돌출거리와 절삭력과의 관계에 관한 연구 (A Study on the Relationship between the Cutting Force and the Critical Ejecting Distance of Disk for a Mill Turret)

  • 최지환;김재실;조수용
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.110-116
    • /
    • 2013
  • Curvic coupling of mill turret should maintain disk weight and the cutting resistance which occurs the machining operation and must also have power transmission function. In order to improve machining operation range, the ejecting distance from curvic coupling to the disk must increase as much as possible. But moment is increased by the lack of capacity of the curvic coupling. Increase of moment is the cause of vibration/noise and degradation of machining performance not only stability problem. The manufacturer of mill turret has no the design information between the ejecting distance and the cutting resistance with safety of curvic coupling. Therefore this study describes a finite element analysis model of mill turret using ANSYS workbench. The structural analyses and modal analyses with varying of the ejecting distances and cutting resistances are performed. Finally the equation for relationship between the critical ejecting distance and the cutting resistance is defined under 5 of the safety factor for the maximum von-Mises stress at the curvic coupling.

다구찌 실험법에 의한 프레스 커터의 최적설계 (Optimized Design of a Press Cutter by a Taguchi's Experimental Method)

  • 한주현;김청균
    • Tribology and Lubricants
    • /
    • 제21권4호
    • /
    • pp.185-192
    • /
    • 2005
  • The press cutter is productive equipment that practically manufactures mechanical components and polymer-based materials such as fabrics, papers, films, leathers, and rubbers into the desired shapes using a press cutting tool. The plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event between a press cutter and a material on a die. The cutting mechanism is complicated and involves plastic flows of a plate in the vicinity of the tip, friction between the wedge and the plate, deformation of the plate. In this paper, we studied the effect of friction between cutter and plastic sheet far producing precise and superior products. In this paper, the press cutter is analyzed numerically using MARC finite element program for a optimization design of a press cutter. The FEM computed results show that the maximum von Mises stress is concentrated on the tip of a press cutter, which may lead to the edge wear or impact wear of the sharp cutter. Based on the FEM result and Taguchi's experimental design method, the optimized design model 9 for a press cutter is recommended as a best one.

Structural assessment of reactor pressure vessel under multi-layered corium formation conditions

  • Kim, Tae Hyun;Kim, Seung Hyun;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.351-361
    • /
    • 2015
  • External reactor vessel cooling (ERVC) for in-vessel retention (IVR) has been considered one of the most useful strategies to mitigate severe accidents. However, reliability of this common idea is weakened because many studies were focused on critical heat flux whereas there were diverse uncertainties in structural behaviors as well as thermal-hydraulic phenomena. In the present study, several key factors related to molten corium behaviors and thermal characteristics were examined under multi-layered corium formation conditions. Thereafter, systematic finite element analyses and subsequent damage evaluation with varying parameters were performed on a representative reactor pressure vessel (RPV) to figure out the possibility of high temperature induced failures. From the sensitivity analyses, it was proven that the reactor cavity should be flooded up to the top of the metal layer at least for successful accomplishment of the IVR-ERVC strategy. The thermal flux due to corium formation and the relocation time were also identified as crucial parameters. Moreover, three-layered corium formation conditions led to higher maximum von Mises stress values and consequently shorter creep rupture times as well as higher damage factors of the RPV than those obtained from two-layered conditions.

가공식품 설비의 재질별 베이스 프레임에 관한 변형 및 하중 구조해석 (Structural Analysis of Deformation and Force on Base Frame by Materials of Processed Food Equipment)

  • 김기홍;김석호;최원식
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.741-746
    • /
    • 2022
  • In this paper, structural analysis was conducted on the base frame for materials of the conveyor system that automatically produces nurungji. The materials of the base frame were selected as SS400, STS304, Al6063-5. Structural analysis performed Von-Mises stress and maximum displacement for 38 hot plates in real situation, and performed weight of distribution force for yield strength, and calculated safety factor. SS400 and STS304 have little displacement, but Al6063-5 is deformed to 0.149mm, which is 2.6 times greater than other materials. However, since the safety factor was calculated as 8.5, it can be applied to the applicable food processing equipment. The weight of the distributed force for the yield strength of the materials was 17.7kN for SS400, 14.7kN for STS304, and 10.2kN for Al6063-T5. When manufacturing other processed foods with a base frame of the same size, a material suitable for the corresponding weight should be selected.

Electrical fire simulation in control room of an AGN reactor

  • Jyung, Jae-Min;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.466-473
    • /
    • 2021
  • Fire protection is one of important issues to ensure safety and reduce risks of nuclear power plants (NPPs). While robust programs to shut down commercial reactors in any fires have been successfully maintained, the concept and associated regulatory requirements are constantly changing or strengthening by lessons learned from operating experiences and information all over the world. As part of this context, it is necessary not only to establish specific fire hazard assessment methods reflecting the characteristics of research reactors and educational reactors but also to make decisions based on advancement encompassing numerical analyses and experiments. The objectives of this study are to address fire simulation in the control room of an educational reactor and to discuss integrity of digital console in charge of main operation as well as analysis results through comparison. Three electrical fire scenarios were postulated and twenty-four thermal analyses were carried out taking into account two turbulence models, two cable materials and two ventilation conditions. Twelve supplementary thermal analyses and six subsequent structural analyses were also conducted for further examination on the temperature and heat flux of cable and von Mises stress of digital console, respectively. As consequences, effects of each parameter were quantified in detail and future applicability was briefly discussed. On the whole, higher profiles were obtained when Deardorff turbulence model was employed or polyvinyl chloride material and larger ventilation condition were considered. All the maximum values considered in this study met the allowable criteria so that safety action seems available by sustained integrity of the cable linked to digital console within operators' reaction time of 300 s.

빌트인 양문형 냉장고 댐핑힌지의 구조해석 및 브래킷핀의 응력집중 저감을 위한 설계개선 (Structural Analysis of Damping Hinge for Built-in Side-by-Side Refrigerator and Design Improvement of Bracket Pin to Reduce Stress Concentration)

  • 이부윤
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.373-379
    • /
    • 2020
  • 본 연구는 빌트인 양문형 냉장고의 도어를 최대개방각도로 열었을 때 발생하는 댐핑힌지의 응력해석과 피로수명 해석을 다룬다. 댐핑힌지의 초기설계안에 대하여 유한요소해석을 수행한 결과, 브래킷핀에서 상부원판과 원통이 직각을 이루는 기하학적 불연속 부위에서 국부적 응력집중이 발생하였고, 최대 von Mises 등가응력이 재료의 항복강도를 초과하였다. 이 최대응력 발생 위치는 시작품을 제작하여 수행한 도어개폐 내구시험 시에 파손된 브래킷핀의 부위와 일치하였으며, 응력해석 결과로부터 계산된 피로수명도 내구시험 결과와 정합성이 있는 것으로 나타났다. 브래킷핀의 초기설계 안에서 나타난 응력집중을 완화하기 위하여 브래킷핀의 형상을 변경하는 3가지 설계개선안을 도출하고 해석을 수행하여 안전성을 평가하였다. 설계개선안의 해석결과, 브래킷핀의 원판과 원통 사이에 필렛을 삽입하면 응력집중을 저감시키고 피로수명은 증가하는 것으로 나타났다. 또한 브래킷핀의 원판을 2단으로 변경하면 응력집중을 저감시키고 피로수명은 증가하는 것으로 나타났다. 결론적으로 가장 우수한 설계개선안은 브래킷핀의 원판을 2단으로 변경하고 반경이 큰 필렛을 삽입한 경우로서, 응력집중이 가장 작고 피로수명이 무한대인 것으로 판단된다.

경사진 임플란트 고정체의 응력 분석 (Stress analysis on the implant fixture with the angulated placement)

  • 김창현;강재석;부수붕;오상호;안옥주;강동완
    • 구강회복응용과학지
    • /
    • 제20권2호
    • /
    • pp.71-81
    • /
    • 2004
  • The purpose of this study was to compare the distributing pattern of stress on the finite element models of two units implant prosthesis with one angulated placement of two implant fixtures. The two unit implant crowns simulated to mandibular first and second molars were made. The two kinds of finite element models were designed according to angulation of fixture ($4.0mm{\times}11.5mm$) : Model 1($15^{\circ}$ buccally angulated placement of one fixture on second molar area), Model 2($15^{\circ}$ lingually angulated placement of one fixture on second molar area). Axial loads of 200N were applied to the center of central fossa and to distance of 2mm and 4mm apart from the center of central fossa. Von-Mises stresses were recorded and compared in the fixtures, and buccolingual section of implants. The results were as follows: 1. Under axial loading at the central fossa, the stress was distributed along the straight fixture except apical portion, while on buccally or lingually angulated placement, the highest stresses were concentrated in the neck portion on the opposite side of the angulated fixture. 2. With offset distance increasing, the stresses were concentrated greater in buccal neck of lingually angulated fixture than in lingual neck of buccally angulated fixture. From the above results, in designing of the occlusal scheme for implant prosthesis with the angulated fixture, occlusal contacts should be placed to distribute stress axially in maximum intercuspation and to avoid offset force during eccentric movements.

Effects of cementless fixation of implant prosthesis: A finite element study

  • Lee, Hyeonjong;Park, Soyeon;Kwon, Kung-Rock;Noh, Gunwoo
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권6호
    • /
    • pp.341-349
    • /
    • 2019
  • PURPOSE. A novel retentive type of implant prosthesis that does not require the use of cement or screw holes has been introduced; however, there are few reports examining the biomechanical aspects of this novel implant. This study aimed to evaluate the biomechanical features of cementless fixation (CLF) implant prostheses. MATERIALS AND METHODS. The test groups of three variations of CLF implant prostheses and a control group of conventional cement-retained (CR) prosthesis were designed three-dimensionally for finite element analysis. The test groups were divided according to the abutment shape and the relining strategy on the inner surface of the implant crown as follows; resin-air hole-full (RAF), resin-air hole (RA), and resin-no air hole (RNA). The von Mises stress and principal stress were used to evaluate the stress values and distributions of the implant components. Contact open values were calculated to analyze the gap formation of the contact surfaces at the abutment-resin and abutment-implant interfaces. The micro-strain values were evaluated for the surrounding bone. RESULTS. Values reflecting the maximum stress on the abutment were as follows (in MPa): RAF, 25.6; RA, 23.4; RNA, 20.0; and CR, 15.8. The value of gap formation was measured from 0.88 to 1.19 ㎛ at the abutment-resin interface and 24.4 to 24.7 ㎛ at the abutment-implant interface. The strain distribution was similar in all cases. CONCLUSION. CLF had no disadvantages in terms of the biomechanical features compared with conventional CR implant prosthesis and could be successfully applied for implant prosthesis.

Load response of the natural tooth and dental implant: A comparative biomechanics study

  • Robinson, Dale;Aguilar, Luis;Gatti, Andrea;Abduo, Jaafar;Lee, Peter Vee Sin;Ackland, David
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권3호
    • /
    • pp.169-178
    • /
    • 2019
  • PURPOSE. While dental implants have displayed high success rates, poor mechanical fixation is a common complication, and their biomechanical response to occlusal loading remains poorly understood. This study aimed to develop and validate a computational model of a natural first premolar and a dental implant with matching crown morphology, and quantify their mechanical response to loading at the occlusal surface. MATERIALS AND METHODS. A finite-element model of the stomatognathic system comprising the mandible, first premolar and periodontal ligament (PDL) was developed based on a natural human tooth, and a model of a dental implant of identical occlusal geometry was also created. Occlusal loading was simulated using point forces applied at seven landmarks on each crown. Model predictions were validated using strain gauge measurements acquired during loading of matched physical models of the tooth and implant assemblies. RESULTS. For the natural tooth, the maximum vonMises stress (6.4 MPa) and maximal principal strains at the mandible ($1.8m{\varepsilon}$, $-1.7m{\varepsilon}$) were lower than those observed at the prosthetic tooth (12.5 MPa, $3.2m{\varepsilon}$, and $-4.4m{\varepsilon}$, respectively). As occlusal load was applied more bucally relative to the tooth central axis, stress and strain magnitudes increased. CONCLUSION. Occlusal loading of the natural tooth results in lower stress-strain magnitudes in the underlying alveolar bone than those associated with a dental implant of matched occlusal anatomy. The PDL may function to mitigate axial and bending stress intensities resulting from off-centered occlusal loads. The findings may be useful in dental implant design, restoration material selection, and surgical planning.