• 제목/요약/키워드: mature soil

검색결과 140건 처리시간 0.02초

Evaluation of sensitivity of soil respiration to temperature in different forest types and developmental stages of maturity using the incubation method

  • Lee, Eun-Hye;Suh, Sang-Uk;Lee, Chang-Seok;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2012
  • To calculate and predict soil carbon budget and cycle, it is important to understand the complex interrelationships involved in soil respiration rate (Rs). We attempted to reveal relationships between Rs and key environmental factors, such as soil temperature, using a laboratory incubation method. Soil samples were collected from mature deciduous (MD), mature coniferous (MC), immature deciduous (ID), and immature coniferous (IC) forests. Prior to measure, soils were pre-incubated for 3 days at $25^{\circ}C$ and 60% of maximum water holding capacity (WHC). Samples of gasses were collected with 0, 2, and 4 h interval after the beginning of the measurement at soil temperatures of 5, 15, 25, and $35^{\circ}C$ (at 60% WHC). Air samples were collected using a syringe attached to the cap of closed bottles that contained the soil samples. The $CO_2$ concentration of each gas sample was measured by gas chromatography. Rs was strongly correlated with soil temperature (r, 0.93 to 0.96; P < 0.001). For MD, MC, ID, and IC soils taken from 0-5 cm below the surface, exponential functions explained 90%, 82%, 92%, and 86% of the respective data plots. The temperature and Rs data for soil taken from 5-10 cm beneath the surface at MD, MC, ID, and IC sites also closely fit exponential functions, with 83%, 95%, 87%, and 89% of the data points, respectively, fitting an exponential curve. The soil organic content in mature forests was significantly higher than in soils from immature forests (P < 0.001 at 0-5 cm and P < 0.005 at 5-10 cm) and surface layer (P = 0.04 at 0-5 cm and P = 0.12). High soil organic matter content is clearly associated with high Rs, especially in the surface layer. We determined that the incubation method used in this study have the possibility for comprehending complex characteristic of Rs.

유기물(有機物) 시용(施用)이 땅콩 생육(生育)에 미치는 영향(影響) (Effects of Organic Materials Application on Growth of Peanut Plant)

  • 황남열;채재석;소재돈
    • 한국토양비료학회지
    • /
    • 제18권2호
    • /
    • pp.215-220
    • /
    • 1985
  • 숙전(熟田)과 신야산개간지(新野山開懇地) 토양(土壤)에서 유기물(有機物) 종류별(種類別) 시용(施用)이 땅콩의 생육(生育)과 수량(收量) 그리고 토양화학성(土壤化學性)에 미치는 효과(效果)를 검토(檢討)한 결과(結果)는 다음과 같다. 1. 숙전(熟田)에서는 신선(新鮮)한 유기물(有機物)인 볏짚, 왕겨 시용이 수량(收量)을 증가(增加)시켰으나 야산개간지(野山開墾地)에서는 퇴비(堆肥) 시용(施用)이 수량(收量)을 증가(增加)시켰다. 2. 야산개간전(野山開墾田)에서 C/N율(率)이 높은 볏짚, 왕겨 시용구(施用區)가 근류(根瘤) 착생량(着生量)이 많았다. 3. 유기물(有機物) 함량(含量)이 많을수록 야산개간전(野山開墾田)에서 수량(收量)이 증가(增加)되었으나 숙전(熟田)은 경향이 없었다. 4. 시험후(試驗後) 토양중(土壤中) 유기물(有機物) 함량(含量)은 숙전(熟田)에서는 변화(變化)가 없었으나 야산개간전(野山開墾田)은 약간 증가(增加)되는 경향(傾向)이었다.

  • PDF

Effects of Long-Term Fertilization on Microbial Diversity in Upland Soils Estimated by Biolog Ecoplate and DGGE

  • An, Nan-Hee;Lee, Sang-Min;Cho, Jung-Rai;Lee, Byung-Mo;Shin, Jae-Hun;Ok, Jung-Hun;Kim, Seok-Cheol
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.451-456
    • /
    • 2014
  • Organic amendment practices can influence diversity and activities of soil microorganisms. There is a need to investigate this impact compared with other types of materials. This study was carried out to evaluate the long term effects of chemical and organic fertilizer on soil microbial community in upland field. During the last 11 years green manure, rice straw compost, rapeseed cake, pig mature compost, NPK, and NPK + pig mature compost were treated in upland soil. Organic fertilizer treatment found with high bacterial colony forming units (CFUs) as compared to chemical and without fertilizer treatment. There was no significant difference in the actinomycetes and fungal population. The average well color development (AWCD) value was the highest in green manure and, the lowest in without fertilizer treatment. Analyses based on the denaturing gradient gel electrophoresis (DGGE) profile showed that rice straw compost and pig mature compost had a similar banding pattern while rapeseed cake, NPK, NPK + pig mature compost and without fertilizer treatment were clustered in another cluster and clearly distinguished from green manure treatment. Bacterial diversity can be highly increased by the application of organic fertilizer while chemical fertilizer had less impact. It can be concluded that green manure had a beneficial impact on soil microbial flora, while, the use of chemical fertilizer could affect the soil bacterial communities adversely.

Effects of Rhizobium Inoculant, Compost, and Nitrogen on Nodulation, Growth, and Yield of Pea

  • Solaiman, A.R.M.;Rabbani, M.G.
    • 한국작물학회지
    • /
    • 제51권6호
    • /
    • pp.534-538
    • /
    • 2006
  • The effects of Rhizobium inoculant, compost, and nitrogen on nodulation, growth, dry matter production, yield attributes, and yield of pea (Pisum sativum) var, IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant alone performed best in recording number and dry weight of nodules/plant. The highest green seed yield of 8.38 ton/ha (36.9% increase over control) and mature seed yield of 2.97 ton/ha (73.7% increase over control) were obtained by the application of 90 kg N/ha. The effects of 60 kg N/ha, Rhizobium inoculant alone and Rhizobium inoculant along with 5 ton compost/ha were same as the effect of 90 kg N/ha in recording plant height, root length, dry weight of shoot, and root both at preflowering and pod filling stages, number of mature pods/plant, number of mature seeds/pod, 1000-seed weight, green, and mature seed yields of pea.

Soil Microbial Communities Associated with Three Arctic Plants in Different Local Environments in Ny-Ålesund, Svalbard

  • Son, Deokjoo;Lee, Eun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권10호
    • /
    • pp.1275-1283
    • /
    • 2022
  • Understanding soil microbial community structure in the Arctic is essential for predicting the impact of climate change on interactions between organisms living in polar environments. The hypothesis of the present study was that soil microbial communities and soil chemical characteristics would vary depending on their associated plant species and local environments in Arctic mature soils. We analyzed soil bacterial communities and soil chemical characteristics from soil without vegetation (bare soil) and rhizosphere soil of three Arctic plants (Cassiope tetragona [L.] D. Don, Dryas octopetala L. and Silene acaulis [L.] Jacq.) in different local environments (coal-mined site and seashore-adjacent site). We did not observe any clear differences in microbial community structure in samples belonging to different plant rhizospheres; however, samples from different environmental sites had distinct microbial community structure. The samples from coal-mined site had a relatively higher abundance of Bacteroidetes and Firmicutes. On the other hand, Acidobacteria was more prevalent in seashore-adjacent samples. The relative abundance of Proteobacteria and Acidobacteria decreased toward higher soil pH, whereas that of Bacteroidetes and Firmicutes was positively correlated with soil pH. Our results suggest that soil bacterial community dissimilarity can be driven by spatial heterogeneity in deglaciated mature soil. Furthermore, these results indicate that soil microbial composition and relative abundance are more affected by soil pH, an abiotic factor, than plant species, a biotic factor.

Litterfall과 토양호흡 측정에 의한 신갈나무 천연림의 지하부 탄소 분배 (Belowground Carbon Allocation of Natural Quercus mongolica Forests Estimated from Litterfall and Soil Respiration Measurements)

  • 이명종;손요환;진현오;박인협;김동엽;김용석;신동민
    • 한국농림기상학회지
    • /
    • 제7권3호
    • /
    • pp.227-234
    • /
    • 2005
  • From published data of mature forests worldwide, Raich and Nadelhoffer suggested that total belowground carbon allocation (TBCA) could be estimated from the difference between annual rates of soil respiration and aboveground litterfall. Here we analyze new measurements of IRGA-based soil respiration and litterfall of natural mature oak forests dominated by Quercus mongolica in Korea. Rates of in situ soil respiration and aboveground litter production are highly and positively correlated. Our results disagree with the Raich and Nadelhoffer model far world forests. A regression analysis of the data from Q. mongolica forests produced the following relationship: annual soil respiration : 141 + 2.08 ${\times}$ annual litterfall. The least squares regression line has a more gentle slope (2.08) than the slope (2.92) described by Raich and Nedelhoffer for mature forests worldwide. The regression slope of our study indicates that, on average, soil respiration is about two times the aboveground litterfall-C, which further implies that TBCA is similar with annual aboveground litterfall-C at natural Q. mongolica forests in Korea. The non-zero Y-intercept (141) of the regression indicates that TBCA may be greater than litterfall-C where litterfall rate are relativery low. Over a gradient of litterfall-C ranging from 200-370 g C $m^{-2}yr^{-l}$, TBCA increased from 350-530 g C $m^{-2}yr^{-l}$.

Floristic composition and species richness of soil seed bank in three abandoned rice paddies along a seral gradient in Gwangneung Forest Biosphere Reserve, South Korea

  • Cho, Yong-Chan;Lee, Seon-Mi;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • 제42권3호
    • /
    • pp.90-102
    • /
    • 2018
  • Background: We sought to understand the relationship between the seed bank and vegetation in abandoned rice paddies in South Korea, in order to guide management of these sites. We investigated the floristic composition and species richness of the soil seed bank and ground vegetation in former paddies along three seral gradients (wet meadow, young forest, and mature forest) in Gwangneung Forest Biosphere Reserve. Results: Seed bank samples contained 59 species, of which the dominant families were Cyperaceae, Gramineae, and Polygonaceae. Species richness and seedling density (59 taxa and 19,121 germinants from all samples) were high. Carex spp. (11, 921 germinants) were the dominant taxa. The species composition in the seed bank changed gradually as the land transitioned from wet meadow to mature forest. Sørensen's index of similarity between above- and below-ground vegetation was 29.3% for wet meadow, 10.8% for young forest, and 2.1% for mature forest. Germinant density also declined, with 10, 256 germinants for wet meadow, 6445 germinants for young forest, and 2420 germinants for mature forest. Conclusions: Changes in aboveground environment and life history traits such as amphicarpic plants, likely affect the composition of soil seed bank species. Abandoned paddy fields may be good sites for restoration of wetland forest and conservation of wetland habitat. Some intervention may be required to promote the recovery of a natural species assemblage.

경기도(京畿道) 광릉(光陵) 상수리나무 성숙림(成熟林)의 질소(窒素) 무기화(無機化)에 관(關)한 연구(硏究) (Nitrogen Mineralization and Nitrification in a Mature Quercus acutissima Stand in Kwangnung, Kyonggi Province)

  • 김춘식
    • 한국산림과학회지
    • /
    • 제87권1호
    • /
    • pp.20-26
    • /
    • 1998
  • 경기도 광릉 중부임업시험장 내에 위치한 상수리나무임분의 무기 질소 동태를 구명하기 위하여 3개의 $20{\times}10m$의 조사구를 선정하고 각 조사구로부터 직경 5cm, 김이 15cm 토양을 비닐주머니매설 배양법을 이용하여 1995년 11월부터 96년 11월까지 1년 동안 조사하였다. 조사 기간 동안 질소 무기화량은 95.2mg/kg/yr, 질산화량은 65.4mg/kg/yr 이었으며, 질산화가 질소 무기화에 차지하는 비율은 69%였다. 질소 무기화나 질산화에 영향을 미치는 환경 인자 중 토양 온도나 토양 수분 조건은 이 임분의 질소 무기화나 질산화에 큰 영향을 미치지 않았다.

  • PDF

Microbial composition and diversity of the long term application of organic material in upland soil

  • An, Nan-Hee;Park, Jong-Ho;Han, Eun-Jung;Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin
    • 한국유기농업학회지
    • /
    • 제19권spc호
    • /
    • pp.190-193
    • /
    • 2011
  • Organic and chemical fertilizer amendments are an important agricultural practice for increasing crop yields. In order to maintain the soil sustainability, it is important to monitor the effects of fertilizer applications on the shift of soil microorganism, which control the cycling of many nutrients in the soils. Here, culture-dependent and culture-independent approaches were used to analyze the soil microorganism and community structure under six fertilization treatments, including green manure, rice straw compost, rapeseed cake, pig mature compost, NPK +pig mature compost, NPK and control. Both organic and chemical fertilizers caused a shift of the cultural microorganism CFUs after treatments. Bacterial CFUs of the organic fertilization treatments were significantly higher than that of chemical fertilization treatments. The DGGE profiles of the bacterial communities of the samples showed that the green manure treatment was a distinct difference in bacterial community, with a greater complexity of the band pattern than other treatments. Cluster analyses based on the DGGE profile showed that rice straw compost and pig mature compost had a similar banding pattern and clustered together firstly. Rapeseed cake, NPK, NPK +pig manure compost and control clustered together in other sub-cluster and clearly distinguished from green manure.

Estimation of the Number of Sampling Points Required for the Determination of Soil CO2 Efflux in Two Types of Plantation in a Temperate Region

  • Lee, Na-Yeon(Mi-Sun);Koizumi, Hiroshi
    • Journal of Ecology and Environment
    • /
    • 제32권2호
    • /
    • pp.67-73
    • /
    • 2009
  • Soil $CO_2$ efflux can vary markedly in magnitude over both time and space, and understanding this variation is crucial for the correct measurement of $CO_2$ efflux in ecological studies. Although considerable research has quantified temporal variability in this flux, comparatively little effort has focused on its spatial variability. To account for spatial heterogeneity, we must be able to determine the number of sampling points required to adequately estimate soil $CO_2$ efflux in a target ecosystem. In this paper, we report the results of a study of the number of sampling points required for estimating soil $CO_2$ efflux using a closed-dynamic chamber in young and old Japanese cedar plantations in central Japan. The spatial heterogeneity in soil $CO_2$ efflux was significantly higher in the mature plantation than in the young stand. In the young plantation, 95% of samples of 9 randomly-chosen flux measurements from a population of 16 measurements made using 72-$cm^2$ chambers produced flux estimates within 20% of the full-population mean. In the mature plantation, 20 sampling points are required to achieve means within $\pm$ 20% of the full-population mean (15 measurements) for 95% of the sample dates. Variation in soil temperature and moisture could not explain the observed spatial variation in soil $CO_2$ efflux, even though both parameters are a good predictor of temporal variation in $CO_2$ efflux. Our results and those of previous studies suggest that, on average, approximately 46 sampling points are required to estimate the mean and variance of soil $CO_2$ flux in temperate and boreal forests to a precision of $\pm$ 10% at the 95% confidence level, and 12 points are required to achieve a precision of $\pm$ 20%.