• Title/Summary/Keyword: maturation

Search Result 2,303, Processing Time 0.028 seconds

Microdrop Culture System for In Vitro Maturation of Bovine Follicular Oocytes (소 난포란의 체외성숙을 위한 미소적 배양체계의 검토)

  • 이은송;이병천;황우석
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.293-300
    • /
    • 1997
  • Supplementation of maturation medium with additional granulosa cells has beneficial effect on in vitro maturation of bovine follicular oocytes and their subsequent cleavage and development in vitro. However, maturation system using granulosa cells have some disadvantages that collection of granulosa cells is cumbersome and metabolic activity of the cells is variable according to ovarian cycle or follicular size. We hypothesized that bovine immsture oocytes matured without granulosa cell coculture can fertilize and develop normally if the medium volume per oocyte is reduced during in vitro maturation. Immature oocytes were matured for 24 hours in a TCM199 containing 10% fetal calf serum, anterior pitultary hormone (0.02 AU /ml Antrinⓡ) and estradiol with or without granulosa cells in vitro. In Group 1, 35 to 40 oocytes were matured in a well of 4-well plastic dish containing 500 $\mu$l of maturation medium and granulosa cells, and 9 to 10 oocytes were matured in a 50-$\mu$l drop of maturation medium without granulosa cells in Group 2. After maturation, oocytes were coincubated with sperm for 30 hours in a modified Tyrode's medium (IVF). Inseminated oocytes were cultured in a microdrop (30 $\mu$l) of a synthetic oviduct fluld medium (SOFM) containing BSA, Minimum Essential Medium essential and non-essential amino acids for 9 days. As a preliminary experiment, we investigated the beneficial effect of granulosa cells during maturation on subsequent cleavage and development using the same type of culturedishes (4-well dish). Granulosa cells could not increase embryo cleavage after fertilization but significantly improved (p<0.05) embryo development to expanding blastocyst (Table1 and 2). In Group 1, 68 and 80% of inseminated oocytes have cleaved at 30 hours and 2 days after IVF, respectively, which is similar (p>0.05) to the result of Group 2 (69% at 30 hours and 78% at 2 days after IVF). The oocytes in Group 2 showed 21 and 11% of developmental rates to expanding and hatching blastocysts, respectively, which was not significantly different (p>0.05) from those (20 and 10%, respectively) of oocytes in Group 1. In conclusion, it has been clarified that a microdrop culture system without granulosa cells for in vitro maturation can support bovine embryonic development to blastocyst in vitro as readily as a granulosa cell coculture system.

  • PDF

Detrimental Effect of Bovine Serum Albumin in a Maturation Medium on Embryonic Development after Somatic Cell Nuclear Transfer in Pigs

  • Lee, Hanna;Lee, Yongjin;Park, Bola;Elahi, Fazle;Lee, Joohyeong;Choi, Jung Hoon;Lee, Seung Tae;Park, Choon-Keun;Hyun, Sang-Hwan;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.361-368
    • /
    • 2014
  • This study was designed to evaluate the effect of bovine serum albumin (BSA) in a maturation medium on oocyte maturation and embryonic development in pigs. Immature pig oocytes were matured for 44 h in a medium supplemented with 0.4% (w/v) BSA, 0.1% (w/v) polyvinyl alcohol (PVA), or 10% (v/v) pig follicular fluid (PFF). After IVM, oocytes reached metaphase II stage were activated for parthenogenesis (PA) or used as cytoplasts for somatic cell nuclear transfer (SCNT). Nuclear maturation (89.5%, 90.7% and 91.3% for BSA, PVA and PFF, respectively) and intraoocyte glutathione contents (1.20, 1.16 and 1.00 pixels/oocyte for BSA, PVA and PFF, respectively) were not altered by the macromolecules added to maturation medium. IVM of oocytes in a medium containing BSA (21.4%) and PVA (20.7%) showed significantly lower blastocyst formation after PA than culture in medium with PFF (39.2%). After SCNT, oocytes matured in medium with BSA showed decreased embryonic development to the blastocyst stage (9.2%) compared to those matured in medium with PFF (28.9%), while 23.6% of SCNT oocytes matured in medium with PVA developed to the blastocyst stage. When the effect of BSA in a maturation medium during the first 22 h and the second 22 h of IVM in combination with PFF or PVA was examined, PVA-BSA showed a higher nuclear maturation (94.1%) than BSA-PFF (84.5%). However, there was no significant difference in the blastocyst formation among tested combinations (47.3, 52.2, 50.0, 44.4 and 49.0% for PFF-PFF, PFF-BSA, PVA-BSA, BSA-PVA and BSA-PFF, respectively). Our results demonstrate that BSA and PVA added to maturation medium can support oocyte maturation comparable to PFF-supplemented medium. However, maturation of oocytes in a BSA-containing medium decreases embryonic development after PA and SCNT when compared with the medium supplemented with PFF.

Effects of follicle size and oocyte diameter on in vitro nuclear maturation of Korean native cattle oocyte (난포크기 및 난자직경과 관련된 한우 체외배양 난자의 핵성숙에 관한 연구)

  • Yong, Hwan-yul;Kim, Hyun-il;Lee, Eun-song;Lee, Byeong-chun;Hwang, Woo-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.929-939
    • /
    • 1996
  • The present study was undertaken to establish a relationship between bovine follicle size and oocyte diameter, compare the nuclear maturation competence of oocytes of different diameter groups and the nuclear maturation changes in Korean Native Cattle according to in vitro maturation period. To compare the relationship between follicle size and oocyte diameter, follicles were dissected, measured, and assigned to one of the following size categories($4{\geq}mm$, 3-4mm, 2-3mm, 1-2mm, and < 1mm), investigate the maturation competence in the different-sized oocytes, which were divided into three groups( < $110{\mu}m$, 110 - < $120{\mu}m$, and ${\geq}120{\mu}m$). Oocytes were cultured in the culture medium during 0, 6, 12, 18, and 24hrs, respectively, stained, and measured the nuclear maturation degree according to period. When compared the relationship between follicle size and intrafollicular oocyte diameter, oocyte diameters of three groups of ${\geq}3mm$ follicle-sized were significantly higher than < 3mm (p<0.01). After in vitro maturation, the rates reached to MI stage of < $110{\mu}m$ oocyte groups(25%) was higher than $110-120{\mu}m$ and ${\geq}120{\mu}m$ oocyte groups(11 and 10%) reached to the same stage(p<0.01), and the rates throughout MII stage of $110-120{\mu}m$ and ${\geq}120{\mu}m$ and < $110{\mu}m$(70 and 76%) groups were higher than < $110{\mu}m$(35%)(p<0.01). When nuclear maturation rates were measured according to period, < 6hr groups(7 and 10%) showed lower rates reached to MI than ${\geq}12hr$ groups(100%), 24hr groups(76%) revealed higher rates throughout MII than 18hr groups(40%). These results indicate that the preparation of oocyte for the production of in vitro fertilization embryos and nuclear transplantation ones could be adapted, as follicle increased up to appointed size there was a corresponding increase in oocyte diameter, and differences of nuclear maturation rate revealed according to oocyte diameter and maturation period.

  • PDF

Evaluation of Midpalatal Suture Maturation using Cone-Beam Computed Tomography in Children and Adolescents (CBCT를 이용한 소아청소년의 정중구개봉합 성숙도 평가)

  • Lee, Yeonju;Mah, Yonjoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.139-146
    • /
    • 2019
  • This study aimed to analyze the association of midpalatal suture (MPS) maturation stages with skeletal maturation and age and to obtain references for establishing a treatment plan for rapid maxillary expansion (RME). Cone-Beam Computed Tomography (CBCT) images from 480 children (240 boys, 240 girls) aged 7 - 15 years were obtained. MPS maturation stages and cervical vertebral maturation indicator (CVMI) were evaluated, and the correlations between MPS maturation stages, CVMI, and age were determined using the Spearman's correlation test. The positive likelihood ratio (LHR) of CVMI for MPS maturation stages was calculated. MPS maturation stages and CVMI showed a strong correlation. Especially, CVMI 1 - 3 showed positive LHR greater than 10 for the diagnosis of stages A - C. MPS maturation stages and age were correlated strongly in girls and moderately in boys. Conventional RME produces the most favorable skeletal effect at CVMI 1 - 3 or those up to 12 years of age and fewer skeletal effects at CVMI 4 or at 13 years of age in girls and 13 - 15 years in boys. It is recommended to evaluate MPS maturation stages using CBCT before RME application at CVMI 5, 6 or at 14, 15 years of age in girls.

The Recovery, In Vitro Maturation and Fertilization of Nili-Ravi Buffalo Follicular Oocytes

  • Samad, H.A.;Khan, I.Q.;Rehman, N.U.;Ahmad, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.491-497
    • /
    • 1998
  • Four types of serum supplements viz. estrus cow serum (ECS), estrus buffalo serum (EBS), pro-estrus buffalo serum (PrBS) and post-estrus buffalo serum (PtBS), added to TCM-199, were evaluated for in vitro maturation and fertilization of buffalo follicular oocytes. The oocytes were recovered from buffalo ovaries after slaughter, using either aspiration or scoring (multiple incisions) method. The recovered oocytes were categorized as A, B and C based on their cumulus investment and ooplasm homogeneity and cultured in four media. The in vitro matured oocytes were inseminated with $1{\times}10^6$ spermatozoa washed in 2.9% sodium citrate solution. The scoring method yielded greater number of morphologically good oocytes than the aspiration method (3.85 vs 1.76 per ovary, p < 0.01). The maturation rates of three categories of oocytes did not differ from one another. The maturation rates of 80.00, 82.08, 78.77 and 66.23%, while the fertilization rates of 54.54, 55.38, 52.80 and 36.76% were recorded for media containing ECS, EBS, PrBS, and PtBS, respectively. The medium containing PtBS gave lower maturation, as well as fertilization, rates than the other three media (p < 0.05). Thus, the scoring method was better than the aspiration method for the recovery of follicular oocytes. The oocytes categorized A, B and C had similar maturation capabilities. The TCM-199 containing buffalo/cow serum collected at pro-estrus or estrus appeared better for in vitro maturation and fertilization of buffalo follicular oocytes than that containing serum collected at post estrus.

Effects of (-)-Epicatechin Gallate on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization

  • Seo, Min-Su;So, Kyoung-Ha;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.153-159
    • /
    • 2016
  • (-)-Epicatechin gallate (ECG) is a polyphenol compound of green tea exhibiting biological activities, such as antioxidant and anticancer effects. To examine the effect of ECG on porcine oocytes during in vitro maturation (IVM), oocytes were treated with 0-, 5-, 15-, and $25{\mu}M$ ECG. After maturation, we investigated nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels and subsequent embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF). After 42 hours of IVM, the $5{\mu}M$ group exhibited significantly increased (p< 0.05) nuclear maturation (89.8%) compared with the control group (86.1%). However, the $25{\mu}M$ group observed significantly decreased (p< 0.05) nuclear maturation (83.5%). In intracellular maturation assessment the 5-, 15-, and $25{\mu}M$ groups had significantly increased (p< 0.05) GSH levels and decreased ROS levels compared with the controls. The 5- and $15{\mu}M$ group showed significantly increased (p< 0.05) embryo formation rates and total cell number of blastocysts after PA (18% and 68.9, 15% and 85.1 vs. 12% and 59.5, respectively) compared with controls. Although the $25{\mu}M$ group observed significantly lower blastocyst formation rates after PA (27.6% vs. 23.2%) than control group, the $5{\mu}M$ group showed significantly increased blastocyst formation rates after PA (37.2% vs. 23.2%) compared to the control group. Furthermore, the $5{\mu}M$ group measured significantly increased blastocyst formation rates (20.7% vs. 8.6%) and total cell number after IVF ($88.3{\pm}1.5$ vs. $58.0{\pm}3.6$) compared to the control group. The treatment of $5{\mu}M$ ECG during IVM affectively improved the porcine embryonic developmental competence by regulating intracellular oxidative stress during IVM.

Effects of Adenosine, Guanosine and Azaserine on Maturation of Mouse Oocytes In Vitro (생쥐 미성숙난자의 체외성숙에 미치는 Adenosine, Guanosine 및 Azaserine의 영향)

  • 전용필;김정훈;목정은;김문규
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • Normal maturation of the mammalian oocytes is prerequisite for the fertilization and the early embryonic development. We have been tested the effects of purine and its de novo synthetic inhibitor, azaserine(Aza) on the maturation of germinal vesicle(GV) and germinal vesicle breakdown(GVBD) mouse oocytes. Denude-immature oocytes were cultivated in the media containing adenosine, guanosine, and/or azaserine, and checked the matruation stage by monitoring the prominent morphological changes. In GV stage oocytes, GV was arrested temporarily by the adenosine(1.0%) and protractedly by the guanosine(65.9%, P<0.001). The regression was increased significantly at the adenosine(90%, P<0.001) but decreased at the guanosine(1.6%, P<0.05). Inhibiting the de novo synthesis of purine, nuclear maturation rate was increase(90.4% : 96.7%), but GV arrest was significantly increased by cotreatment with guanosine(P<0.001). Polar body extraction significantly was increased at the Aza(P<0.05), but not in others. In GVBD oocytes, adenosine itself did not affect GVBD arrest. Guanosine, on the other hand, elevated GVBD arrest rate(P<0.001), but co-treated with Aza, decreased GVBD arrest(P<0.001). Aza increased GVBD arrest rate(20.2%, P<0.05) compared with control. From those results, we know that guanosine shows more prominent effect on the inhibition of nuclear maturation at the GV stage, and of the 1st polar body extrusion at the GVBD stage. Adenosine showed the cytoplasmic toxicity at GV stage oocyte. Our data speculate that cytoplasmic cAMP level is auto-regulated by endogenous adenylate cyclase while GVBD is inhibited by guanosine, since purine toxicity is not observed in the GVBD stage. And it is showed that purine metabolism is concerned with nuclear maturation, that the amounts of purine metabolism is not even during the oocyte maturation.

  • PDF

EFFECTS OF OVARY TYPE, OOCYTE GRADE, HORMONE, SPERM CONCENTRATION AND FERTILIZATION MEDIUM ON IN VITRO MATURATION, FERTILIZATION AND DEVELOPMENT OF BOVINE FOLLICULAR OOCYTES

  • Im, K.S.;Kim, H.J.;Chung, K.M.;Kim, H.S.;Park, K.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.123-127
    • /
    • 1995
  • In vitro embryo production (IVP) is affected by various factors during in vitro maturation, fertilization, and development. In this experiment, the effect of ovary type, quality of follicular oocyte, medium used for fertilization, presence of hormone in medium, sperm concentration on in vitro maturation and fertilization were examined for effective IVP. In vitro maturation was carried out using TCM-199 supplemented with 15% FCS and hormones in 5% $CO_2$ incubator for 24h. In vitro fertilization was performed with frozen-thawed sperm in modified mTALP medium containing 0.3% BSA, $10{\mu}g/ml$ heparin, and 5mM/ml caffeine for 24h. The fertilized embryos were co-cultured on monolayer of cumulus cells in TCM-199. When oocytes were collected from functionally active and inactive ovaries, maturation rate was 76.9 and 7.7%, respectively. When oocytes were classified morphologically to good and poor grades, maturation rate was 75 and 58.8%, respectively. FSH + LH + $E_2$ (86.4%) showed higher maturation rate than control (53.0%) and FSH (73%). The fertilization rate was 28.2, 100 and 91.7% in $1.6{\times}10^5$, $5.0{\times}10^5$ and $10.0{\times}10^5$ sperm concentration per ml. When oocytes were fertilized in mTALP and BO media, fertilization and cleavage rates of oocytes in mTALP were higher (84.3 and 56.9%) than those (67.4 and 23.3%) in BO medium. In this experiment, in vitro maturation, fertilization and development of oocytes were affected by type of ovary, grade of oocyte, hormones, sperm concentration and fertilization medium.

Effects of Estrus Status, Oocyte Diameter and Supplementations on In Vitro Maturation of Canine Immature Oocytes

  • Yoon J. T.;Choi E. J.;Lee H. J.;Kim C. H.;Min K. S.;Hwang S. S.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • The present study was performed to determine the ability of canine oocytes to achieve nuclear maturation according to oocyte diameter and different culture environments. All of the collected oocytes were classified by grade 1 to 3 and by their diameters such as $<100{\mu}m,\;<100{\mu}m\;to\;<110{\mu}m,\;<110{\mu}m,\;to\;<120{\mu}m,\;>120{\mu}m,$. Oocytes were cultured in culture medium supplemented with $10\%\;FBS,\;0.4\%\;BSA,\;10\%$ porcine follicular fluid (pFF), $10\%$ canine serum (CS), or $10\%$ canine estrus serum (CES). The mean number of oocytes recovered from estrus status ovaries was significantly higher than that of anestrus status ovaries (p<0.01). The maturation rate of grade 1 oocytes $(>120{\mu}m)$ was significantly higher than that of the other groups (p<0.05). Nuclear maturation to MI to MII in diameter of $>110{\mu}m$ groups was significantly higher than that in $<100{\mu}m$ group (p<0.05). The oocytes cultured in $10\%$ FBS­supplemented group were significantly higher rate of GVBD compared to the other supplemented groups (p<0.05), and oocytes maturation to MI to MII in $10\%$ FBS-, $0.4\%$ BSA-, and $10\%$ pFF-supplemented groups were significantly higher than those in $10\%$ CS-supplemented group (p<0.05). Based on these results, the estrus status and the size of oocyte affect positively to improve nuclear maturation of canine immature oocytes in vitro. Among several protein sources, porcine follicular fluid was the most effective supplementation to culture medium to achieve higher in vitro maturation rate.

Effect of Alpha-Linolenic Acid on Oocyte Maturation and Embryo Development in Pigs

  • Lee, Ji-Eun;Hwangbo, Yong;Kim, Hwa-Young;Lee, Won-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • The aim of this study was to determine the effect of additional alpha-linolenic acid (ALA) supplementation during in vitro maturation (IVM) and culture (IVC) on nucleic maturation and embryo development of pigs. Cumulus-oocyte complexes (COCs) were incubated in IVM medium containing different concentration of ALA (25, 50 and $100{\mu}M$) for 44 h. After in vitro maturation, nuclear maturation of oocytes were evaluated by aceto-orcein stain. Mature oocytes with $50{\mu}M$ ALA were fertilized and cultured in IVC medium with ALA (25, 50 and $100{\mu}M$) during early-embryogenesis (48 hours after fertilization). Then, embryos were cultured with $25{\mu}M$ ALA during early embryogenesis and/or late embryogenesis (120 hours after early-embryogenesis). In results, oocyte maturation were significantly increased by $50{\mu}M$ ALA treatment groups compared with control groups (p<0.05). Treatment of $25{\mu}M$ ALA during early-embryogenesis enhanced cleavage rate of embryo compared with other groups (p<0.05), whereas formation and total cell number of blastocyst had no significant difference. Similarly, cleavage rate of embryos were increased by $25{\mu}M$ ALA supplement during early- or late-embryogenesis than ALA treatment both stage of embryogenesis (p<0.05), but did not influence to blastocyst formation. Interestingly, total cell number of blastocyst were enhanced in ALA treatment group during early-embryogenesis. These findings indicated that ALA supplement enhance the nuclear maturation of oocyte and embryo development, however, excessive ALA could negatively influence. Therefore, we suggest that ALA is used for improvement of in vitro production of mammalian embryo and further study regarding with functional mechanism of ALA is needed.