• Title/Summary/Keyword: matrix inequality

Search Result 534, Processing Time 0.021 seconds

Rank-constrained LMI Approach to Simultaneous Linear Quadratic Optimal Control Design (계수조건부 LMI를 이용한 동시안정화 LQ 최적제어기 설계)

  • Kim, Seog-Joo;Cheon, Jong-Min;Kim, Jong-Moon;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soom-Nam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1048-1052
    • /
    • 2007
  • This paper presents a rank-constrained linear matrix inequality(LMI) approach to simultaneous linear-quadratic(LQ) optimal control by static output feedback. Simultaneous LQ optimal control is formulated as an LMI optimization problem with a nonconvex rank condition. An iterative penalty method recently developed is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method, and the results are compared with those of previous work.

Robust $H_{\infty}$ Control for Uncertain Two-Dimensional Discrete Systems Described by the General Model via Output Feedback Controllers

  • Xu, Huiling;Zou, Yun;Xu, Shengyuan;Guo, Lei
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.785-791
    • /
    • 2008
  • This paper considers the problem of robust $H_{\infty}$ control for uncertain 2-D discrete systems in the General Model via output feedback controllers. The parameter uncertainty is assumed to be norm-bounded. The purpose is the design of output feedback controllers such that the closed-loop system is stable while satisfying a prescribed $H_{\infty}$ performance level. In terms of a linear matrix inequality, a sufficient condition for the solvability of the problem is obtained, and an explicit expression of desired output feedback controllers is given. An example is provided to demonstrate the application of the proposed method.

Design of a reduced-order $H_{\infty}$ controller using an LMI method (LMI를 이용한 축소차수 $H_{\infty}$ 제어기 설계)

  • Kim, Seog-Joo;Chung, Soon-Hyun;Cheon, Jong-Min;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.729-731
    • /
    • 2004
  • This paper deals with the design of a low order $H_{\infty}$ controller by using an iterative linear matrix inequality (LMI) method. The low order $H_{\infty}$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

Hyper-ellipsoidal clustering algorithm using Linear Matrix Inequality (선형행렬 부등식을 이용한 타원형 클러스터링 알고리즘)

  • Lee, Han-Sung;Park, Joo-Young;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.300-305
    • /
    • 2002
  • In this paper, we use the modified gaussian kernel function as clustering distance measure and recast the given hyper-ellipsoidal clustering problem as the optimization problem that minimizes the volume of hyper-ellipsoidal clusters, respectively and solve this using EVP (eigen value problem) that is one of the LMI (linear matrix inequality) techniques.

Gain Scheduled Discrete Time Control for Disturbance Attenuation of Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이산시간 이득 스케줄 제어)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • A new discrete time gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input under known disturbance maximum norm. The state feedback gains are scheduled according to the proximity of the state of the plant to the origin. The controllers are derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state moves closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition under the given disturbance maximum norm.

A Robustness Control of Magnetic Levitation System Using Linear Matrix Inequality (선형행렬부등식을 이용한 자기 부상계의 강인성 제어)

  • Kim, C.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.79-85
    • /
    • 1999
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor system because of little friction, no lubrication, no noise and so on. The magnetic levitation system needs the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of sensor easily goes into troublesome caused by sensor failure discord between the measurement point and the control point etc. This paper gives a controller design method of magnetic levitation system which satisfies the given $H_{\infty}$ control performance and the robust stability of the presence of physical parameter perturbations. To the end, we investigated the validity of the designed controller through results of simulation.

  • PDF

Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 이론)

  • Kang Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.81-87
    • /
    • 2006
  • A new gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input. The state feedback controller is scheduled according to the proximity to the origin of the state of the plant. The controllers is derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Application (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 적용)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.65-73
    • /
    • 2007
  • In this paper, the gain scheduled state feedback and disturbance feedforward control design proposed in the previous paper has been applied to a simple matching system and a turret stabilization system. In such systems, it is needed to attenuate disturbance response effectively as long as control input satisfies the given constraint on its magnitude. The scheduled control gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain control and the scheduled state feedback control cases.

A Decentralized Fuzzy Controller for Experimental Nonlinear Helicopter Systems (헬리콥터 시스템의 퍼지 분산 제어기 설계)

  • 김문환;이호재;박진배;차대범;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.141-144
    • /
    • 2001
  • This paper proposes a decentralized control technique for 2-dimensional experimental helicopter systems. The decentralized control technique is especially suitable in large-scale control systems. We derive the stabilization condition for the interconnected Takagi-Sugeno (75) fuzzy system using the rigorous tool - Lyapunov stability criterion and formulate the controller design condition in terms of linear matrix inequality (LMI). To demonstrate the feasibility of the proposed method, we include the experiment result as well as a computer simulation one, which strongly convinces us the applicability to the industry.

  • PDF

Design of a Low-order Pole Placement Power System Stabilizer Using Simultaneous Stabilization (동시안정화를 이용한 저차원 극배치 전력계통안정화장치 설계)

  • Kim, Seog-Joo;Lee, Jong-Moo;Kwon, Soon-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1708-1712
    • /
    • 2008
  • This paper describes a linear matrix inequality (LMI) approach to the design of robust low-order power system stabilizers (PSSs), which are used to damp out local-mode oscillations of synchronous generators. The performance of a PSS is expressed as the location of the closed-loop poles, and a single fixed-gain pole-placement controller is synthesized for a wide range of operating conditions. The synthesis results in simultaneous regional pole-placement stabilization. and is formulated as an LMI feasibility problem with a rank condition. A penalty method is applied to solve the rank-constrained LMI problem. Numerical experiments with a single-machine connected to an infinite bus system were performed to demonstrate the proposed method.