• Title/Summary/Keyword: matlab simulation

Search Result 1,404, Processing Time 0.036 seconds

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF

Performance Analysis of Implementation on IoT based Smart Wearable Mine Detection Device

  • Kim, Chi-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.51-57
    • /
    • 2019
  • In this paper, we analyzed the performance of IoT based smart wearable mine detection device. There are various mine detection methods currently used by the military. Still, in the general field, mine detection is performed by visual detection, probe detection, detector detection, and other detection methods. The detection method by the detector is using a GPR sensor on the detector, which is possible to detect metals, but it is difficult to identify non-metals. It is hard to distinguish whether the area where the detection was performed or not. Also, there is a problem that a lot of human resources and time are wasted, and if the user does not move the sensor at a constant speed or moves too fast, it is difficult to detect landmines accurately. Therefore, we studied the smart wearable mine detection device composed of human body antenna, main microprocessor, smart glasses, body-mounted LCD monitor, wireless data transmission, belt type power supply, black box camera, which is to improve the problem of the error of mine detection using unidirectional ultrasonic sensing signal. Based on the results of this study, we will conduct an experiment to confirm the possibility of detecting underground mines based on the Internet of Things (IoT). This paper consists of an introduction, experimental environment composition, simulation analysis, and conclusion. Introduction introduces the research contents such as mines, mine detectors, and research progress. It consists of large anti-personnel mine, M16A1 fragmented anti-mine, M15 and M19 antitank mines, plastic bottles similar to mines and aluminum cans. Simulation analysis is conducted by using MATLAB to analyze the mine detection device implementation performance, generating and transmitting IoT signals, and analyzing each received signal to verify the detection performance of landmines. Then we will measure the performance through the simulation of IoT-based mine detection algorithm so that we will prove the possibility of IoT-based detection landmine.

A Tunable Transmitter - Tunable Receiver Algorithm for Accessing the Multichannel Slotted-Ring WDM Metropolitan Network under Self-Similar Traffic

  • Sombatsakulkit, Ekanun;Sa-Ngiamsak, Wisitsak;Sittichevapak, Suvepol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.777-781
    • /
    • 2004
  • This paper presents an algorithm for multichannel slotted-ring topology medium access protocol (MAC) using in wavelength division multiplexing (WDM) networks. In multichannel ring, there are two main previously proposed architectures: Tunable Transmitter - Fixed Receiver (TTFR) and Fixed Transmitter - Tunable Receivers (FTTR). With TTFR, nodes can only receive packets on a fixed wavelength and can send packets on any wavelengths related to destination of packets. Disadvantage of this architecture is required as many wavelengths as there are nodes in the network. This is clearly a scalability limitation. In contrast, FTTR architecture has advantage that the number of nodes can be much larger than the number of wavelength. Source nodes send packet on a fixed channel (or wavelength) and destination nodes can received packets on any wavelength. If there are fewer wavelengths than there are nodes in the network, the nodes will also have to share all the wavelengths available for transmission. However the fixed wavelength approach of TTFR and FTTR bring low network utilization. Because source node with waiting data have to wait for an incoming empty slot on corresponding wavelength. Therefore this paper presents Tunable Transmitter - Tunable Receiver (TTTR) approach, in which the transmitting node can send a packet over any wavelengths and the receiving node can receive a packet from any wavelengths. Moreover, the self-similar distributed input traffic is used for evaluation of the performance of the proposed algorithm. The self-similar traffic performs better performance over long duration than short duration of the Poison distribution. In order to increase bandwidth efficiency, the Destination Stripping approach is used to mark the slot which has already reached the desired destination as an empty slot immediately at the destination node, so the slot does not need to go back to the source node to be marked as an empty slot as in the Source Stripping approach. MATLAB simulator is used to evaluate performance of FTTR, TTFR, and TTTR over 4 and 16 nodes ring network. From the simulation result, it is clear that the proposed algorithm overcomes higher network utilization and average throughput per node, and reduces the average queuing delay. With future works, mathematical analysis of those algorithms will be the main research topic.

  • PDF

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

Design of a Neural Network PI Controller for F/M of Heavy Water Reactor Actuator Pressure (신경회로망과 PI제어기를 이용한 중수로 핵연료 교체 로봇의 구동압력 제어)

  • Lim, Dae-Yeong;Lee, Chang-Goo;Kim, Young-Baik;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1255-1262
    • /
    • 2012
  • Look into the nuclear power plant of Wolsong currently, it is controlled in order to required operating pressure with PI controller. PI controller has a simple structure and satisfy design requirements to gain setting. However, It is difficult to control without changing the gain from produce changes in parameters such as loss of the valves and the pipes. To solve these problems, the dynamic change of the PI controller gain, or to compensate for the PI controller output is desirable to configure the controller. The aim of this research and development in the parameter variations can be controlled to a stable controller design which is reduced an error and a vibration. Proposed PI/NN control techniques is the PI controller and the neural network controller that combines a parallel and the neural network controller part is compensated output of the controller for changes in the parameters were designed to be robust. To directly evaluate the controller performance can be difficult to test in real processes to reflect the characteristics of the process. Therefore, we develope the simulator model using the real process data and simulation results when compared with the simulated process characteristics that showed changes in the parameters. As a result the PI/NN controller error and was confirmed to reduce vibrations.

A Design of Adaptive Channel Estimate Algorithm for ICS Repeater (ICS 중계기를 위한 적응형 채널추정 알고리듬 설계)

  • Lee, Suk-Hui;Song, Ho-Sup;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.19-25
    • /
    • 2009
  • In this thesis, design effective elimination interference algorithm of ICS repeat system for repeater that improve frequency efficiency. Error convergence speed and accuracy of LMS Algorithm are influenced by reference signal. For improve LMS Algorithm, suggest Adaptive channel estimate algorithm. For using channel characteristic, adaptive channel estimate algorithm make reference signal similar interference signal by convolution operation and complement LMS algorithm demerit. For make channel similar piratical channel, apply Jake's Rayleigh multi-path model that random five path with 130Hz Doppler frequency. LMS algorithm and suggested adaptive channel estimate algorithm that have 16 taps apply to ICS repeat system under Rayleigh multi-path channel, so simulate with MATLAB. According to simulate, ICS repeat system with LMS algorithm show -40dB square error convergent after 150 datas iteration and ICS repeat system with adaptive channel estimate algorithm show -80dB square error convergent after 200 datas iteration. Analyze simulation result, suggested adaptive channel estimate algorithm show more three times iteration performance than LMS algorithm, and 40dB accuracy.

Threshold Level Setting of a Receiver in Optical Subscriber Network with Manchester Coded Downstream and NRZ Upstream Re-modulation for the Improvement of Upstream Data Ratios (맨체스터 부호로 코딩된 하향신호의 재변조를 이용한 광가입자 망에서 상향속도개선을 위한 임계치의 설정)

  • Park, Sang-Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.175-185
    • /
    • 2011
  • The threshold level of a receiver is analyzed for the simplification of system and the improvement of upstream data ratios in optical subscriber network of which the upstream date rate and the optical transmitted power are changed to meet the requested BER (Bit Error Rate) defined per interactive multimedia services. In asynchronous optical subscriber network of which the upstream to downstream data ratios are 1:1/2, 1:1/4, 1:1/8 and 1:1/16 with manchester coded downstream and NRZ (Non Return to Zero) downstream re-modulation, the BER performance is theoretically analyzed and it is performed by simulation with MATLAB according to the four types of downstream data for four models. The results have shown that in the cases which the upstream to downstream data ratios are 1:1/4, 1:1/8 and 1:1/16 the conventional receiver with threshold level of 1/2 can be applied regardless of average received optical powers and the BER is not much deteriorated compared with using the optimal threshold level. In the case that the upstream to downstream data ratio is 1:1/2 the threshold level in an optical receiver could be fixed at 1/3 and the BER is not much deteriorated compared with using the optimal threshold level as the average received optical power increases.

Cortical Thickness Estimation Using DIR Imaging with GRAPPA Factor 2 (DIR 영상을 이용한 피질두께 측정: GRAPPA 인자 2를 이용한 비교)

  • Choi, Na-Rae;Nam, Yoon-Ho;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.1
    • /
    • pp.56-63
    • /
    • 2010
  • Purpose : DIR image is relatively free from susceptibility artifacts therefore, DIR image can make it possible to reliably measure cortical thickness/volume. One drawback of the DIR acquisition is the long scan time to acquire the fully sampled 3D data set. To solve this problem, we applied a parallel imaging method (GRAPPA) and verify the reliability of using the volumetric study. Materials and methods : Six healthy volunteers (3 males and 3 females; age $25.33{\pm}2.25$ years) underwent MRI using the 3D DIR sequence at a 3.0T Siemens Tim Trio MRI scanner. GRAPPA simulation was performed from the fully sampled data set for reduction factor 2. Data reconstruction was performed using MATLAB R2009b. Freesurfer v.4.3.0 was used to evaluate the cortical thickness of the entire brain, and to extract white matter information from the DIR image, Analyze 9.0 was used. The global cortical thickness estimated from the reconstructed image was compared with reference image by using a T-test in SPSS. Results : Although reduced SNR and blurring are observed from the reconstructed image, in terms of segmentation the effect was not so significant. The volumetric result was validated that there were no significant differences in many cortical regions. Conclusion : This study was performed with DIR image for a volumetric MRI study. To solve the long scan time of 3D DIR imaging, we applied GRAPPA algorithm. According to the results, fast imaging can be done with reduction factor 2 with little loss of image quality at 3.0T.

Vector Control for Wave Power Generation System using Permanent Magnet Linear Synchronous Generator (파력발전용 선형발전시스템의 벡터제어)

  • Park, Joon Sung;Hyon, Byong Jo;Yun, Junbo;Lee, Ju;Choi, Jang-Young;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.120-128
    • /
    • 2016
  • This paper describes power generation from sea waves by using linear permanent magnet generator. A buoy is placed on the ocean surface and connected to the generator. The wave energy is carried out from the movement of a buoy. An electrical conversion system is needed between the generator and the grid. For an analysis of the power system, the modeling of the linear generator and converter system was proceeded. This paper proposes vector control method for wave power generation system using linear generator. In order to verify the proposed method, simulation and experiment performed and the results support the validity of the control scheme.

Improvement of Received Optical Power Sensitivity in Asymmetric 2.5Gbps/1.2Gbps Passive Optical Network with Inverse Return to Zero(RZ) coded Downstream and NRZ upstream re-modulation (역 RZ 부호로 코딩된 하향신호의 재변조를 이용한 비대칭 2.5Gbps/622Mbps 수동 광가입자 망에서의 수신 감도의 개선)

  • Park, Sang-Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.65-72
    • /
    • 2010
  • We propose the asymmetric 2.5Gbps/622Mbps PON(Passive Optical Network) in order to reduce the bandwith of filter at receiver with inverse RZ(Return to Zero) code coded downstream and NRZ(Non Return to Zero) upstream re-modulation. I theoretically analyze BER(Bit Error Rate) performance and the power sensitivity with the optimal threshold level by performing simulation with MATLAB according to the types of downstream data. The results have shown that the optimal threshold level at the optical receiver could be saturated at 0.33 as the optical received power increase more than -26dBm to keep $10^{-12}$ of BER to a minimum. Also the power sensitivity is more improved by about 3dB by fixing the threshold level at 0.33 than the conventional receiver. The proposed system can be a useful technology for optical access networks with asymmetric upstream and downstream data rates because the optical receiver can be used without controlling threshold levels and that does not require a light source in optical network unit (ONU) and its control circuits in the optical line termination (OLT).