• Title/Summary/Keyword: mating design

Search Result 70, Processing Time 0.036 seconds

Rotor Coastdown and Acceleration Performances of High-speed Motors Supported on Ball Bearings and Gas Foil Bearings (볼 베어링 및 가스 포일 베어링으로 지지되는 고속 전동기의 회전체 관성정지 및 가속 성능 연구)

  • Mun, HyeongWook;Seo, JungHwa;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.123-131
    • /
    • 2019
  • This study characterizes the coastdown performances of two small electric motors supported on high-speed ball bearings (BBs) and gas foil bearings (GFBs), and it predicts their acceleration performances. The two motors have identical permanent magnetic rotors and mating stators. However, the shaft of the GFBs has a larger mass and polar/transverse moments of inertia than that of the BBs. Motor coastdown tests demonstrate that the rotor speed decreases linearly with the BBs and nonlinearly with the GFBs. A simple model for the BBs predicts a constant drag torque and linear decay of speed with time. The test data validate the model predictions. For the GFBs, the hydrodynamic lubrication model predictions reveal that the drag torque increases linearly with speed, and the speed decreases exponentially with time. The predictions agree very well with the test data in the speed range of 100-30 krpm. The boundary lubrication model predicts a constant drag torque and linear decay of speed with time. The predictions agree well with the test data below 15 krpm. Mixed lubrication occurs in the speed range of 30-15 krpm. Rotor acceleration performances are predicted based on the characteristics of deceleration performances. The GFBs require more time to reach 100,000 krpm than the BBs because of their larger shaft polar moment of inertia. However, predictions for the assumed identical polar moment of inertia reveal that the GFBs have a nearly identical acceleration performance to that of the BBs with a motor torque greater than $0.03N{\cdot}m$.

Proposed surface modeling for slip resistance of the shoe-floor interface

  • Kim, In-Ju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.515-528
    • /
    • 1995
  • Slips and falls are the major causes of the pedestrian injuries in the industry and the general community throughout the world. With the awareness of these problems, the friction coefficients of the interface between floorings and footwear have been measured for the evaluation of slip resistant properties. During this measurement process, the surface texture has been shown to be substantially effective to the friction mechanism between shoe heels and floor surfaces under various types of walking environment. Roughness, either of the floor surface or shoe heels, provides the necessary drainage spaces. This roughness can be designed into the shoe heel but this is inadequate in some cases, especially a wear. Therefore, it is essential that the proper roughness for the floor surface coverings should be provided. The phenomena that observed at the interface between a sliding elastomer and a rigid contaminated floor surface are very diverse and combined mechanisms. Besides, the real surface geometry is quite complicate and the characteristics of both mating surfaces are continuously changing in the process of running-in so that a finite number of surface parameters can not provide a proper description of the complex and peculiar shoe - floor contact sliding mechanism. It is hypothesised that the interface topography changes are mainly occurred in the shoe heel surfaces, because the general property of the shoe is soft in the face of hardness compared with the floor materials This point can be idealized as sliding of a soft shoe heel over an array of wedge-shaped hard asperities of floor surface. Therefore, it is considered that a modelling for shoe - floor contact sliding mechanism is mainly depended upon the surface topography of the floor counterforce. With the model development, several surface parameters were measured and tested to choose the best describing surface parameters. As the result, the asperity peak density (APD) of the floor surface was developed as one of the best describing parameters to explain the ambiguous shoe - floor interface friction mechanism. It is concluded that the floor surface should be continuously monitored with the suitable surface parameters and kept the proper level of roughness to maintain the footwear slip resistance. This result can be applied to the initial stage of design for the floor coverings.

  • PDF

Study on the Mechanical Face Seal Performance for a 7-ton-Class Turbopump (7톤급 터보펌프 기계평면실의 성능 시험 연구)

  • Bae, Joonhwan;Kwak, Hyun D.;Choi, Changho
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.154-159
    • /
    • 2016
  • This paper presents an experimental study of the leakage performance and endurance performance of a mechanical face seal in the 7-ton-class turbopump of the Korea Space Launch Vehicle 2 third-stage engine. We install a mechanical face seal between the fuel pump and turbine to prevent the mixing of the fuel and turbine gas. We design and manufacture a prototype mechanical face seal, which has two parts, namely, a bellows seal assembly and mating ring. We set up a test facility to measure the leakage and endurance of the mechanical face seal. For the similarity tests, we use water under real operating conditions such as high rotational speed, high temperature, and high pressure. Through investigation of the leakage and carbon wear rate, it is possible to evaluate the performance of the mechanical face seal. The results of the leakage and endurance performance test demonstrate the absence of any leakage from the prototype mechanical face seal after a trial run and clarify that the acceptable wear rate fully satisfies the turbopump requirements. Finally, we install a qualified mechanical face seal in a 7-ton-class turbopump and perform a validation test in the turbopump real-propellant test facility in the Korea Aerospace Research Institute. The test results confirm that the mechanical face seal works well under real operating conditions.

Multivoltine and Bivoltine Silkworm F1 Hybrids Adaptable to Type One (1) Climatic Conditions in the Philippines

  • Marlyn M. Viduya;Maricris E. Ulat;Gemma E. Supsup;Julieta P. Abuan;Edgar P. Sanchez;Roel D. Supsup
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.1
    • /
    • pp.34-43
    • /
    • 2023
  • The eighteen (18) F1 hybrid combinations were tested to identify potential combinations adaptable to type 1 climatic conditions in the Philippines. The six (6) bivoltine purelines (DMMMSU 108, DMMMSU 109, DMMMSU 110, DMMMSU 111, DMMMSU 113, and DMMMSU 119); and three (3) multivoltine purelines (DMMMSU 1000, DMMMSU 1007, and DMMMSU 1014), were crossed (multivoltine x bivoltine) in a mating plan. These were arranged in a Completely Randomized Design (CRD), replicated three times, and analyzed using Analysis of Variance (ANOVA). A test of significance was done using ANOVA across years and Tukey's Honest Significant Difference Test (HSD). The multiple trait evaluation index (EI) method was also used in the identification of potential F1 hybrids. Three major phases were done: (1) parental rearing of multivoltine and bivoltine pure lines for breed multiplication; (2) hybridization process; and (3) evaluation of F1 hybrids. Rearing evaluations were conducted for three consecutive years. Based from the three evaluations, 10 potential crosses were identified: DMMMSU MV-12, DMMMSU MV-11, DMMMSU MV-13, DMMMSU MV-16, DMMMSU MV-07, DMMMSU MV-14, DMMMSU MV-05, DMMMSU MV-09, DMMMSU MV-03, and DMMSU MV-10. The topmost combinations with the best economic and commercial characters and are consistently adaptable during two (2) cropping seasons were DMMMSU MV-07, DMMMSU MV-12, DMMMSU MV-05, DMMMSU MV-09 and DMMMSU MV-11. These newly-identified F1 hybrids are considered potential breeds that could improve cocoon production.

CHANGES OF ABUTMENT SCREW AFTER REPEATED CLOSING AND OPENING

  • Kim Hee-Jung;Chung Chae-Heon;Oh Sang-Ho;Choi Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.628-640
    • /
    • 2004
  • Statement of problem. Wear as a result of repeated closing/opening cycles may decrease the friction coefficient of screw head, threads, and other mating components and, consequently, resistance to opening gradually decreases. It may cause screw loosening, which is one of the most common failures in implant prosthesis. Purpose. The purpose of this study is to evaluate the changes on the head and thread surface of the abutment screws after repeated closing and opening through the examination of tested screws in SEM(scanning electron microscope). Materials and methods. Five species of abutments were selected (3i-three, Avana-two) respectively by two pieces. The implant fixtures were perpendicularly mounted in liquid unsaturated polyesther(Epovia, Cray Valley Inc.) with dental surveyor. Each abutment was secured to the implant fixture by each abutment screw with recommended torque value using a digital torque controller. The abutment screws were repeatedly tightened and removed 20 times with a digital controller. FESEM (field emission scanning electron microscope, Netherland, Phillips co., model:XL 30 SFEG) was used to observe changes of each part caused by repeatedly closing/opening expeiment. First, the Photomicrographs of pre-test screws provided by each manufacturer were taken. The changes of each screw were investigated after every fifth closing and opening experiment with FESEM. Scaning electron microscope photomicrographs of each screw were taken four times. Results. As the number of closing and opening was increased, the wear or distortion of hexed or squared slot that contacted with the driver tip was more severely progressed. Wear or distortion of hexed slot was more severe than that of squared slot and it was more remarkable in the titanium screw than in the gold screw. All the tested screws showed that the width in the crest of their screw thread decreased gradually as the test was proceeded. Conclusions. Conclusively, we recommend the clinical use of gold screw, a periodic exchanges of abutment screws and avoiding repeated closing/opening unnecessarily. We also suggest a more careful manipulation of the abutment screw and screw-driver and using of abutment screw with an acute-angled slot design rather than an obtuse-angled one. Finally, it is suggested that the new slot design and the surface treatment for enduring wear or distortion should be devised.

Estimation of Combining Ability of Production Traits from Diallel Crosses of Korean Native Chicken Strains (토종 종계 이면교배조합 시험에 따른 생산형질의 결합능력 추정)

  • Choi, Eun Sik;Bang, Min Hee;Kim, Ki Gon;Kwon, Jae Hyun;Jung, Ok Young;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • This study was conducted to develop a new synthetic breed of Korean native chicken. The combining ability and reciprocal effects for production traits were estimated on 1,157 hens from a $5{\times}5$ diallel cross-mating design using grand parent stock (GPS) lines of Korean native chicken. Body weight, viability, age at first egg laying, egg weight, and hen-day egg production were measured and analyzed. The results showed that the general combining ability (GCA) of the survival rate during laying periods was -9.6 to 11.1, with the highest value obtained in the W strain. Additionally, the GCA of the body weight at 12 weeks was -209.7 to 162.2, with the highest value obtained in the F strain. The GCA for age at fist egg laying was estimated to be -2.8 to 3.7, while the GCA of egg weight was -0.91 to 0.96, and the GCA of hen-day egg production was -4.9 to 6.0. In the estimation of specific combining ability, the YW combination showed the highest survival rate, FW showed the highest body weight at 12 weeks, and GW showed the highest hen-day egg production. The reciprocal effects were significantly different among crosses for almost all productivity traits. In identical breeding combinations, differences in ability were observed when the maternal or paternal breeds were switched. The mean value based on combining ability was higher in WY, WF, and GW combinations for survival rate; GF, HG, and HF combinations for body weight at 12 weeks; and GW, YW, and FW combinations for hen-day egg production. It is concluded that the GF and HF combinations, which have excellent growth performance and moderate survival rate, are the most desirable paternal parent stock (PS) strains, and the GW and FW combinations, which have great laying performance and moderate body weight, are the most desirable maternal PS strains.

A STUDY ON THE FIT OF THE IMPLANT-ABUTMENT-SCREW INTERFACE (임플란트-지대주-나사의 적합에 관한 연구)

  • Kim Nak-Hyung;Chung Chae-Heon;Son Mee-Kyoung;Back Dae-Hwa
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.503-518
    • /
    • 2003
  • Statement of problem : There have been previous studies about considerable variations in machining accuracy and consistency in the implant-abutment-screw interfaces. Purpose : The purpose of this study was to evaluate the machining accuracy and consistency of implant/abutment/screw combinations on two randomly selected implants from each of four manufactures. Material and methods : In this study, screws were respectively used to secure a cemented abutment, to a hexlock implant fixture ; teflon coated titanium alloy screw(Torq-Tite) and titanium alloy screw in Steri--Oss system, gold-plated gold-palladium alloy screw(Gold-Tite) and titanium alloy screw in 3i system gild screw ana titanium screw in AVANA Dental Implant system, and titanium screws in Paragon System. The implants were perpendicularly mounted in polymethyl methacrylate autopolymerizing acrylic resin block(Orthodontic resin, Densply International Inc. USA) by use of dental surveyer. Each abutment screw was secured to the implant with recommended torque value using a digital torque controller. Each screw was again tightened after 10 minutes. All samples were cross sectioned with grinder-polisher unit(Omnilap 2000 SBT Inc) after embeded in liquid unsaturated polyester (Epovia, Cray Valley Inc) Results : There were the largest gaps in the neck areas of screws in hexagonal extension implants which were examined in this study. The leading edge of the abutment screw thread (superior surface) was in contact with the implant body thread, and the majority of the contacting surfaces were localized to the middle portion of the mating threads. Considerable variation in the contacting surfaces was noted in the samples evaluated. Amounts of contact in the abutment screw thread were larger for assemblies with Gold-Tite screw, gold alloy screw. Torq-Tite screw than those with titanium screws. The findings of intimate contact between the screw and screw seat were seen in all samples, regardless of manufacturers. However, microgap between the head and lateral neck surface of the screw and the abutment could be dectected in all samples. The findings of intimate contact between the platform of the implant and the bottom of the abutment were consistent in all samples, regardless of manufacturers. However, microgaps between the lateral surface of external hex of the fixture and the abutment could be dectected in all samples. Conclusion : Considerable variations in machining accuracy and consistency were noted in the samples and the implant-abutment-screw interfaces were incomplete. From the results of this study, further development of the system will be required, including improvements in pattern design.

Construction of a Pure Cryparin-null Mutant for the Promoter Analysis of Cryparin Gene (Cryparin 유전자의 promoter 분석을 위한 cryparin 유전자 치환체의 순수 제조)

  • Kim, Myoung-Ju;Yang, Moon-Sik;Kim, Dae-Hyuk
    • The Korean Journal of Mycology
    • /
    • v.26 no.4 s.87
    • /
    • pp.450-457
    • /
    • 1998
  • The cryparin of Cryphonectria parasitica belongs to a cell wall associated fungal hydrophobin. The cryparin, though it is encoded by a single copy gene, is known for the high expression during the liquid culture of C. parasitica, and it turns out that 22% of total mRNA was transcribed for cryparin at 48hr after the liquid culture. In addition, it is also known as one of down-regulated fungal proteins by the presence of double stranded RNA virus, Cryphonectria hypovirus 1. In previous studies (Kim et al., 1999), we have constructed a cryparin-null mutant by replacing the cryparin gene with hygromycin B resistance gene due to site directed homologous recombination. In order for the promoter analysis of cryparin which seems to be very strong as well as mycoviral specific, it is preferable to have a strain with only a target promoter replaced and a discernable target site for incoming vectors. However, the cryparin-null mutant revealed the presence of an additional copy of transforming vector except the one which replaced the cryparin gene. In addition, the cryparin-null mutant did not contain any markers for targeted integration of incoming vectors. This prompts us to design an experiment to obtain a strain for promoter analysis of cryparin gene. A different mating type strain EP6(Mata, $met^-$) was mated with the cryparin-null mutant ${\triangle}$Crp194-7(MatA, Crp${\triangle}$::hph) to make the progenies with only a single replacement vector and $met^-$ characteristic remained. Nutritional assay as well as Southern blot analysis revealed that the progeny, ${\triangle}$Crp194-a6, was the methionine auxotroph with a single replacing vector in genome. Northern blot analysis and PAGE showed that there was no cryparin produced in this bred strain either.

  • PDF

Effect of Artificial Insemination Frequency on Reproductive Performance in Sows (인공수정 횟수가 모돈의 번식성적에 미치는 영향)

  • Hong, Jin-su;Jin, Song-san;Fang, Lin-hu;Kim, Yoo-yong
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.183-188
    • /
    • 2016
  • This experiment was conducted to investigate the effects of artificial insemination(AI) frequency on reproductive performance of sows. A total of 48 F1 sows(Yorkshire×Landrace) were allocated to 1 of 4 treatments using completely randomized design(CRD). Four experimental treatments were AI frequency from one to four times(AI1, AI2, AI3, AI4) respectively. Estrus detection was done at approximately 09:00 and 21:00 daily by applying back pressure to females with the presence of a mature boar and the weaning to estrus interval(WEI) of all sows were 5~6 day. Sows detected in estrus were mated at 12 hour after and mating interval was 12 hour by treatments. This experiment demonstrated that the lowest farrowing rate was observed AI3 treatment. Frequency of AI did not influence on reproductive performance when WEI was 5-6 day. No significant differences were observed on litter size, born alive and litter birth weight. Consequently, decreased AI frequency did not have any detrimental effect on reproductive performance when estrus detection was adequate. Decreased AI frequency could reduce cost of production of pigs when sows showed normal reproductive performance.

Applying QFD in the Development of Sensible Brassiere for Middle Aged Women (QFD(품질 기능 전개도)를 이용한 중년 여성의 감성 Brassiere 개발)

  • Kim Jeong-hwa;Hong Kyung-hi;Scheurell Diane M.
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.12 s.138
    • /
    • pp.1596-1604
    • /
    • 2004
  • Quality Function Deployment(QFD) is a product development tool which ensures that the voice of the customer needs is heard and translated into products. To develop a sensible brassiere for middle-aged women QFD was adopted. In this study the applicability and usefulness of QFD was examined through the engineering design process for a sensible brassiere for middle-aged women. The customer needs for the wear comfort of brassiere was made by one-on-one survey of 100 women who aged 30-40. The customer competitive assessment was generated by wearing tests of 10 commercial brassieres. The subjective assessment was conducted in the enviornmental chamber that was controlled at $28{\pm}1^{\circ}C,\;65{\pm}3\%RH.$ As a results, we developed twenty-one customer needs and corresponding HOWs for the wear comfort of brassiere. The Customer Competitive Assessment was generated by wearing tests of commercial brassiere. The subjective measurement scale and dimension for the evaluation of sensible brassiere were extracted from factor analysis. Four factors were fitting, aesthetic property, pressure sensation, displacement of brassiere due to movement. The most critical design parameter was wire-related property and second one was stretchability of main material of brassiere. Also, wearing comfort of brassiere was affected by the interaction of initial stretchability of wing and support of strap. Engineering design process, QFD was applicable to the development of technical and aesthetic brassieres.