• 제목/요약/키워드: mathematical structures

검색결과 935건 처리시간 0.028초

A new hybrid optimization algorithm based on path projection

  • Gharebaghi, Saeed Asil;Ardalan Asl, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.707-719
    • /
    • 2018
  • In this article, a new method is introduced to improve the local search capability of meta-heuristic algorithms using the projection of the path on the border of constraints. In a mathematical point of view, the Gradient Projection Method is applied through a new approach, while the imposed limitations are removed. Accordingly, the gradient vector is replaced with a new meta-heuristic based vector. Besides, the active constraint identification algorithm, and the projection method are changed into less complex approaches. As a result, if a constraint is violated by an agent, a new path will be suggested to correct the direction of the agent's movement. The presented procedure includes three main steps: (1) the identification of the active constraint, (2) the neighboring point determination, and (3) the new direction and step length. Moreover, this method can be applied to some meta-heuristic algorithms. It increases the chance of convergence in the final phase of the search process, especially when the number of the violations of the constraints increases. The method is applied jointly with the authors' newly developed meta-heuristic algorithm, entitled Star Graph. The capability of the resulted hybrid method is examined using the optimal design of truss and frame structures. Eventually, the comparison of the results with other meta-heuristics of the literature shows that the hybrid method is successful in the global as well as local search.

Smart pattern recognition of structural systems

  • Hassan, Maguid H.M.
    • Smart Structures and Systems
    • /
    • 제6권1호
    • /
    • pp.39-56
    • /
    • 2010
  • Structural Control relies, with a great deal, on the ability of the control algorithm to identify the current state of the system, at any given point in time. When such algorithms are designed to perform in a smart manner, several smart technologies/devices are called upon to perform tasks that involve pattern recognition and control. Smart pattern recognition is proposed to replace/enhance traditional state identification techniques, which require the extensive manipulation of intricate mathematical equations. Smart pattern recognition techniques attempt to emulate the behavior of the human brain when performing abstract pattern identification. Since these techniques are largely heuristic in nature, it is reasonable to ensure their reliability under real life situations. In this paper, a neural network pattern recognition scheme is explored. The pattern identification of three structural systems is considered. The first is a single bay three-story frame. Both the second and the third models are variations on benchmark problems, previously published for control strategy evaluation purposes. A Neural Network was developed and trained to identify the deformed shape of structural systems under earthquake excitation. The network was trained, for each individual model system, then tested under the effect of a different set of earthquake records. The proposed smart pattern identification scheme is considered an integral component of a Smart Structural System. The Reliability assessment of such component represents an important stage in the evaluation of an overall reliability measure of Smart Structural Systems. Several studies are currently underway aiming at the identification of a reliability measure for such smart pattern recognition technique.

Analysis and design of demountable embedded steel column base connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.303-315
    • /
    • 2017
  • This paper describes the finite element model for predicting the fundamental performance of embedded steel column base connections under monotonic and cyclic loading. Geometric and material nonlinearities were included in the proposed finite element model. Bauschinger and pinching effects were considered in the simulation of embedded column base connections under cyclic loading. The degradation of steel yield strength and accumulation of plastic damage can be well simulated. The accuracy of the finite element model is examined by comparing the predicted results with independent experimental dataset. It is demonstrated that the finite element model accurately predicts the behaviour and failure models of the embedded steel column base connections. The finite element model is extended to carry out evaluations and parametric studies. The investigated parameters include column embedded length, concrete strength, axial load and base plate thickness. Moreover, analytical models for predicting the initial stiffness and bending moment strength of the embedded column base connection were developed. The comparison between results from analytical models and those from experiments and finite element analysis proved the developed analytical model was accurate and conservative for design purposes.

Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.431-446
    • /
    • 2017
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. In this study, buckling of horizontal concrete columns reinforced with Zinc Oxide (ZnO) nanoparticles is analyzed. Due to the presence of ZnO nanoparticles which have piezoelectric properties, the structure is subjected to electric field for intelligent control. The Column is located in foundation with vertical springs and shear modulus constants. Sinusoidal shear deformation beam theory (SSDBT) is applied to model the structure mathematically. Micro-electro-mechanic model is utilized for obtaining the equivalent properties of system. Using the nonlinear stress-strain relation, energy method and Hamilton's principal, the motion equations are derived. The buckling load of the column is calculated by Difference quadrature method (DQM). The aim of this study is presenting a mathematical model to obtain the buckling load of structure as well as investigating the effect of nanotechnology and electric filed on the buckling behavior of structure. The results indicate that the negative external voltage applied to the structure, increases the stiffness and the buckling load of column. In addition, reinforcing the structure by ZnO nanoparticles, the buckling load of column is increased.

Stability analysis of prestressed stayed steel columns with split-up crossarm systems

  • Li, Pengcheng;Li, Zhiqiang;Jia, Bin;Wang, Hao
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.769-782
    • /
    • 2020
  • A Prestressed stayed steel column is an efficient and lightweight way with regard to enhancing the stability behaviour of a compression column. In the past, researchers primarily concentrated on investigating the behaviour of stayed steel columns with horizontal crossarms. However, this article focuses on prestressed stayed steel columns with split-up crossarm system, in which the crossarms are aslant and rotational symmetrically arranged. A mathematical formula calculating the optimal pretension that corresponds to the maximum critical buckling load was established according to geometric analysis based on the small deformation assumption. It was demonstrated that critical buckling mode of this stayed column is different from the one with horizontal crossarms. The governing imperfection direction that should be adopted in the nonlinear buckling analysis was determined in this work. In addition, the effects of crossarm inclination, stay diameter, and crossarm length on the stability behaviour were investigated. An influencing factor denotes the ratio of the load carrying capacity of the prestressed stayed steel column to the Euler load of the main column was also obtained.

유한요소법을 이용한 고무 연결요소의 정-동강성 계수에 관한 연구 (Study on the Static and Dynamic Stiffness Coefficients of Rubbers Connector by Using Finite Element Method)

  • 박노길;박성태
    • 전산구조공학
    • /
    • 제8권2호
    • /
    • pp.103-113
    • /
    • 1995
  • 고무 재질로 이루어진 차량 구조물의 연결요소에 대한 등가 강성계수는 차량 시스템 동역학 특성에 매우 민감하게 영향을 주므로 이에 대한 신뢰성있는 해석이 요구된다. 본 논문에서는, 고무의 역학 모델을 정하중 하에서는 유한 변형 및 Hook 모델로 그리고 동하중 하에서는 Voigt 모델로 가정하여, 연결요소의 등가 정-동강성계수를 유한요소법으로 해석하고자 한다. 실제 차량에 사용되고 있는 동일 모양의 방진고무들을 실험 평가한 결과 강성계수값들의 분산 정도가 심함을 알 수 있었다. 유한요소 해석에 필요한 고무 재질의 물성치의 신뢰성을 높이기 위하여 제품의 특정 방향 정특성 실험 데이타로부터 역으로 재질의 물성치를 규명하였다. 그 물성치로부터 원하는 방향에서의 강성계수를 산출하여 실험치와 비교하여 효용성을 보였다.

  • PDF

Unifying calculation of vortex-induced vibrations of overhead conductors

  • Leblond, Andre;Hardy, Claude
    • Wind and Structures
    • /
    • 제8권2호
    • /
    • pp.79-88
    • /
    • 2005
  • This paper deals with a unified way for calculating vortex-induced vibrations (Aeolian vibrations in transmission line parlance) of undamped single overhead conductors. The main objective of the paper is to identify reduced parameters which would unify the predicted vibration response to the largest possible extent. This is actually done by means of a simple mathematical transformation resulting, for a given terrain (associated to a given wind turbulence intensity), into a single, unified response curve that is applicable to any single multi-layered aluminium conductor. In order to further validate the above process, the predicted, unified response curve is compared with measured response curves drawn from tests run on a full-scale test line using several aluminium-conductor-steel-reinforced (ACSR), all-alloy-aluminium-conductor (AAAC) and aluminium-conductor-alloy-reinforced (ACAR) conductors strung at different tensions. On account of the expected scatter in the results from such field tests, the agreement is shown to be good. The final results are expressed by means of only four different curves pertaining to four different terrain characteristics. These curves may then be used to assess the vibration response of any undamped single, multi-layer aluminium conductor of any diameter, strung at any practical tension.

콘크리트의 탄산화로 인해 탈착된 염소이온의 재확산에 대한 해석 연구 (Mathematical Modeling of Re-Diffusion Response of De-Sorbed Chloride Ions in Concrete Due to Carbonation)

  • 윤인석;성재덕
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.259-260
    • /
    • 2009
  • 대부분의 콘크리트 구조물은 탄산화 및 염소이온의 침투에 의하여 철근부식을 겪고 있으나, 대다수의 콘크리트 구조물은 염소이온과 탄산화로 인한 복합열화를 겪고 있음에도 불구하고, 대다수의 연구들은 단일열화만을 다루고 있다. 본 연구는 탄산화로 인하여 탈착된 염소이온의 재확산을 추정하기 위한 접근방법을 개발하고 하였다. 이는 탄산화와 염소이온의 복합열화에 대한 성공적인 모델을 정립하는데 핵심적인 요소이다. 본 연구결과는 향후 복합열화 모델식에 반영되어 염소이온의 탈락으로 인해 탄산화 경계영역에서 염소이온의 농축 및 재확산을 효과적으로 표현할 수 있을 것으로 생각된다.

  • PDF

발사환경시험을 이용한 통신방송위성 Ku대역 중계기 패널의 모델 검증 (Model Validation for the CBS Ku-Band Transponder Panel Using Launch Environmental Test)

  • 서현석;최장섭;박종흥;우형제
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.387-394
    • /
    • 2005
  • Accurate predictions and simulations of the behavior of space structures based on analytical models become more important. In order to perform analysis to support the design of Ku-band transponder panel for the Communications and Broadcasting Satellite(CBS), mathematical models of the panel were generated in the form of finite element models. Test verification of these models is required before the transponder panel can be certified for launch environments. A modal identification was performed to obtain modal parameters which can be compared with the test results using correlation techniques. This paper approaches the sensor placement from the standpoint of the structural dynamicist who uses the modal parameter obtained during launch environmental test. The models were validated by performing a test-analysis correlation and updating analysis. It was proved that the Ku-band transponder panel satisfies the environmental test requirements.

접촉 표면의 강성 변화에 따른 박테리아의 군집 패턴 (Bacterial Pattern Formation in Response to the Stiffness of Substrates)

  • 김중경;박은정;김성래;조명옥;한화택
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.88-91
    • /
    • 2007
  • Animal cells show different behaviors in response to the mechanical properties of the substrates. We hypothesize that the rigidity of the substrates also affects the bacterial motility and controls the colony dynamics. It is found that the colony size of Escherichia colis and Bacillus subtilis grown on the agar plates is correlated with agarose gel concentrations and thus with the substrate rigidity. High- resolution microscopic imaging reveals that bacteria in single colonies form different aggregation patterns on the agar plates with varying gel concentration. We measured the apparent diffusion coefficients in the agarose gel plates made with different gel concentrations. Mathematical modeling and quantitative imaging of dye dispersion in the agar plates suggest that there is a close connection between the diffusion rate and the colony size. Nanoscale pore structures and kinetic constraints in the porous media may have an effect on bacterial colony dynamics.

  • PDF