• Title/Summary/Keyword: mathematical ecology

Search Result 39, Processing Time 0.023 seconds

Impact of Inquiry-Based Teaching on Student Attitude toward Mathematics

  • Kim, Taik-H.;Pan, Wei
    • Research in Mathematical Education
    • /
    • v.14 no.3
    • /
    • pp.249-262
    • /
    • 2010
  • Large Midwest university faculty members proposed the Science and Technology Enhancement Program Project (STEP) to improve students' learning in the secondary mathematics classroom using modules of inquiry-based teaching. The purpose of this study was to determine the impact of the STEP Project on students' attitude toward mathematics. Hierarchical linear models (HLM) were used to evaluate the impact of the STEP Project. The sample group for the study was 130 ninth grade students enrolled in Integrated Algebra I in a large urban school district. The school was one of eight secondary schools that participated in the STEP Project. The classes in the treatment group were three of five classes ordered in terms of the highest, middle, and lowest mean GPA. The control group consisted of two other middle GPA classes. The classes had an average of 25 students. Teachers who previously had been involved in the STEP Project taught all treatment and control classes. The inquiry-based teaching activities provided by the project were confined to the treatment classes. The survey measuring students' attitudes toward mathematics were obtained for both groups of students. The inquiry-based teaching affected students' attitudes toward mathematics (p < 0.07, ES = 3.07). Especially, students who had preexisting low attitudes toward mathematics were significantly affected by treatment (p < 0.02, ES = 0.02), while the treatment positively affected African American students overall at p < 0.08 (ES = 0.58).

Preliminary Assessment of Human Inpacts on Water Qualities (Nutrient Concentration) of the Han River on the Korean Peninsula, Based on a Mathematical Model (數學 model 에 依한 漢江의 水質 ( 영양소농도 ) 에 미치는 人間의 影響에 關한 豫察)

  • Nakane, Kaneyuki;Mitsuo MItsudera;Yang-Jai Yim;Sa-Uk Hong
    • The Korean Journal of Ecology
    • /
    • v.7 no.3
    • /
    • pp.109-118
    • /
    • 1983
  • Near future dynamics of water qualities (nutrient concentration) of the Han River was predicted, based on a mathematical model representing the relationship between the nutrient concentration in th river wagter and environmental factors (population density, land-use types, rock compositions and nutrient accumulation) in the basin. The population density and land-use types were forecasted to change distinctly in the downstream area, especially in Seoul City area in 1985~1990 whereas any environmental factor was not expected to change its level significantly in both upstream and middle reaches areas. It was indicated by the model that the nutrients concentration in the up- and mid-streams would keep its level in future as it was, but it would increase drastially in the downstream area. For the preservation of the water qualities in the downstream at least to keep its level as it was in 1980, practical countermeasures were proposed, based on the assessment of the contribution of each environmental factor to the water qualities.

  • PDF

The Relationship between Photosynthetic Active Radiation and Leaf Orientation (光合成有效放斜와 葉向과의 關係)

  • Chang, Nam-Kee;Heui-Baik Kim
    • The Korean Journal of Ecology
    • /
    • v.8 no.2
    • /
    • pp.99-107
    • /
    • 1985
  • Photosynthetically Active Radiation (PAR) affects the growth of plants as well as their photosynthetic rates. A mathematical model for intercepted solar radiation on the tilted leaf with any azimuth angle was established and the leaf orientation in which receives the maximum solar radiation was determined each month, during the growing season, and for an year. PAR was maximized at the leaf elevation of 50。~60。 in the winter, at that of 20。~40。. On the whole the leaves of tilt angle 0。~40。 received much radiation comparing with those of other tilt angles. The theoretical tendencies were compared with the distribution of leaf orientation measused practically. The average leaf elevation of maple tree was 17.0。$\pm$12.0。, and that of ginkgo was 29.8。$\pm$16.0。. Several results from other literatures support our suggestion that cumulative effevct of the relationships between surface normal vector and a vector pointing in the direction of the radiation determine the leaf orientation.

  • PDF

Dynamic Customer Population Management Model at Aggregate Level

  • Kim, Geon-Ha
    • Management Science and Financial Engineering
    • /
    • v.16 no.3
    • /
    • pp.49-70
    • /
    • 2010
  • Customer population management models can be classified into three categories: the first category includes the models that analyze the customer population at cohort level; the second one deals with the customer population at aggregate level; the third one has interest in the interactions among the customer populations in the competitive market. Our study proposes a model that can analyze the dynamics of customer population in consumer-durables market at aggregate level. The dynamics of customer population includes the retention curves from the purchase or at a specific duration time, the duration time expectancy at a specific duration time, and customer population growth or decline including net replacement rate, intrinsic rate of increase, and the generation time of customer population. For this study, we adopt mathematical ecology models, redefine them, and restructure interdisciplinary models to analyze the dynamics of customer population at aggregate level. We use the data of previous research on dynamic customer population management at cohort level to compare its results with those of ours and to demonstrate the useful analytical effects which the precious research cannot provide for marketers.

The Litter Accumulation, Decay and Turnover Models and their Validation (낙엽의 축적, 분해 및 무기화에 관한 모델정립과 그 적용)

  • Chang, Nam-Kee;Sung-Kyu Lee;Bok-Seon Lee;Heu Baik Kim
    • The Korean Journal of Ecology
    • /
    • v.10 no.3
    • /
    • pp.139-149
    • /
    • 1987
  • Mathematical models of the litter accumulation, decay and turnover in the grassland and forest ecosystems of equilibrium state of the annual litter production were established to analyse the decay rates of organic and inorganic constituents of the litter. Those models were validated by an application to a Phragmites longivalvis grassland in a delta of the River Nakdong. The decay constants of cold-water-soluble fractions, other carbohydrates, hot-water-soluble fractions, cellulose, crude fat, lignin and crude protein in the litter were 0.730, 0.583, 0.555, 0.505, 0.479, 0.331 and 0.310 respectively. The amount of mineral nutrients such as N. P. K. Ca and Mg returned annually to the soil were estimated to 7.09, 1.34, 2.36, 4.37 and 0.79g/m2 respectively.

  • PDF

Incorporating Social & Economic Factors for the Pasture Project in Kum River (금강 참게목장화 사업의 사회-경제 통합모델링)

  • Jeon, Dae-Uk
    • Korean System Dynamics Review
    • /
    • v.12 no.1
    • /
    • pp.59-74
    • /
    • 2011
  • This article deals with an economic evalutation of the 'Pasture Project of Kum River', which is the farming plan of mitten crabs in a stream of it. An augmented model of social capital is based on the past ecological-economic system dynamics model and elaborated further with suggestions of social capital literature. During the modeling process a chain diagram of causal relations and its relevant mathematical equations are presented for simulating the project performance, and the simulation results are provided to contrast the dynamic behaviors of the former ecological-economic model with ones of the new model incorporating social capital. The results indicate that an increase in the economic benefit of the project could happen in case of considering the process of social capital accumulation around the case area, which can be regarded as a remarkable trial to approve the common confidence in the role of social capital to enhance an economic achievement.

  • PDF

Measuring Connectivity in Heterogenous Landscapes: a Review and Application (이질적 경관에서의 연결성 측정: 리뷰 및 적용)

  • Song, Wonkyong;Kim, Eunyoung;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.391-407
    • /
    • 2012
  • The loss of connectivity and fragmentation of forest landscapes are seriously hindering dispersal of many forest-dwelling species, which may be critical for their viability and conservation by decreasing habitat area and increasing distance among habitats. For understanding their environmental impacts, numerous spatial models exist to measure landscape connectivity. However, general relationships between functional connectivity and landscape structure are lacking, there is a need to develop landscape metrics that more accurately measure landscape connectivity in whole landscape and individual patches. We reviewed functional and structural definition of landscape connectivity, explained their mathematical connotations, and applied representative 13 indices in 3 districts of Seoul having fragmented forest patches with tits, the threshold distance was applied 500m by considering the dispersal of tits. Results of correlation and principal component analysis showed that connectivity indices could be divided by measurement methods whether they contain the area attribute with distance or not. Betweenness centrality(BC), a representative index measuring distance and distribution among patches, appreciated highly stepping stone forest patches, and difference of probability of connectivity(dPC), an index measuring including area information, estimated integrated connectivity of patches. Therefore, for evaluating landscape connectivity, it is need to consider not only general information of a region and species' characteristics but also various measuring methods of landscape connectivity.

Individual-Based Models Applied to Species Abundance Patterns in Benthic Macroinvertebrate Communities in Streams in Response to Pollution

  • Cho, Woon-Seok;Nguyen, Tuyen Van;Chon, Tae-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.420-443
    • /
    • 2012
  • An Individual-Based Model (IBM) was developed by employing natural and toxic survival rates of individuals to elucidate the community responses of benthic macroin-vertebrates to anthropogenic disturbance in the streams. Experimental models (dose-response and relative sensitivity) and mathematical models (power law and negative exponential distribution) were applied to determinate the individual survival rates due to acute toxicity in stressful conditions. A power law was additionally used to present the natural survival rate. Life events, covering movement, exposure to contaminants, death and reproduction, were simulated in the IBM at the individual level in small (1 m) and short (1 week) scales to produce species abundance distributions (SADs) at the community level in large (5 km) and long (1~2 years) scales. Consequently, the SADs, such as geometric series, log-series, and log-normal distribution, were accordingly observed at severely (Biological Monitoring Working Party (BMWP<10), intermediately (BMWP<40) and weakly (BMWP${\geq}50$) polluted sites. The results from a power law and negative exponential distribution were suitably fitted to the field data across the different levels of pollution, according to the Kolmogorov-Smirnov test. The IBMs incorporating natural and toxic survival rates in individuals were useful for presenting community responses to disturbances and could be utilized as an integrative tool to elucidate community establishment processes in benthic macroin-vertebrates in the streams.

Stock Assessment of Yellow Croacker for Korean Trawlers in The Yellow Sea and East China Sea (항해 및 동지나해에 있어서 기선저인망어업 대상 참조기의 자원량 해석)

  • 신상택
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 1972
  • Yellow croacker, Tseudociaena manchurica Jordan et Thompson in the Yellow Sea and East China Sea are subjected to be caught by trawl nets throughout the year. First indices of population size in every period 8re calculated. Considering present status of the yellow croacker fishery and ecology of the fish, mathematical models must have been established in order to determine catchability coefficient, natural m ortali ty, fishing mortality, recrui ting coefficient of the fish ing ground, and dispersion coefficienl from the fishing ground. The results an, summmarized as follows: Catchabil i ty coefficient $(C) = 2. 2628 {\times} 10^{-5}$ Natural mortality (M)=0.3293 Population for lhe first half season(July 1st to the following January 3lst) Initial population = 14, 621 $/\frac{M}{T}$ Recruitment =45, 597 $/\frac{M}{T}$ Natural mortality = 8, 660 $/\frac{M}{T}$ Final population =42, 970 $/\frac{M}{T}$ Population for the latter 1131f scason(February 1st to June 30th) Initial population = 69, 170 $/\frac{M}{T}$ Dispersion =51, 688 $/\frac{M}{T}$ Natural mortality = 6, 082 $/\frac{M}{T}$ Final population = 1, 802 $/\frac{M}{T}$.

  • PDF

Optimization of Water-Reusing Network among the Industries in an Eco-Industrial Park Complex Using Water Pinch Technology (워터핀치기술을 이용한 생태산업단지 내 기업간 용수 재이용망 최적화)

  • Kim, Young-Soo;Kim, Hyun-Joo;Lee, In-Beum;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1165-1173
    • /
    • 2008
  • An water-reuse network design has drawn attention as a systematic method of reducing fresh water usage and increasing water-using efficiency. The final goal of an eco-industrial park(EIP) is accomplishing industrial sustainability and constructing water-reuse network can be a solution. When designing water-reuse network connecting various processes which consume water, the water pinch technology can be used frequently, since it simultaneously minimize freshwater usage and wastewater discharge. In this research water pinch technology is applied to develop an effective water-reuse network in an EIP. Three scenarios based on different reusing strategies were developed. The results show that the final water-reuse network can reduce the total fresh water usage more than 30%, while the water expenses decrease by 20%. It can be concluded that water pinch technology is an effective tool to optimize water-reuse network among different industrial facilities.