• Title/Summary/Keyword: math affect

Search Result 26, Processing Time 0.022 seconds

Effect of Kinetic Degrees of Freedom of the Fingers on the Task Performance during Force Production and Release: Archery Shooting-like Action

  • Kim, Kitae;Xu, Dayuan;Park, Jaebum
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • Objective: The purpose of this study was to examine the effect of changes in degrees of freedom of the fingers (i.e., the number of the fingers involved in tasks) on the task performance during force production and releasing task. Method: Eight right-handed young men (age: $29.63{\pm}3.02yr$, height: $1.73{\pm}0.04m$, weight: $70.25{\pm}9.05kg$) participated in this study. The subjects were required to press the transducers with three combinations of fingers, including the index-middle (IM), index-middle-ring (IMR), and index-middle-ring-little (IMRL). During the trials, they were instructed to maintain a steady-state level of both normal and tangential forces within the first 5 sec. After the first 5 sec, the subjects were instructed to release the fingers on the transducers as quickly as possible at a self-selected manner within the next 5 sec, resulting in zero force at the end. Customized MATLAB codes (MathWorks Inc., Natick, MA, USA) were written for data analysis. The following variables were quantified: 1) finger force sharing pattern, 2) root mean square error (RMSE) of force to the target force in three axes at the aiming phase, 3) the time duration of the release phase (release time), and 4) the accuracy and precision indexes of the virtual firing position. Results: The RMSE was decreased with the number of fingers increased in both normal and tangential forces at the steady-state phase. The precision index was smaller (more precise) in the IMR condition than in the IM condition, while no significant difference in the accuracy index was observed between the conditions. In addition, no significant difference in release time was found between the conditions. Conclusion: The study provides evidence that the increased number of fingers resulted in better error compensation at the aiming phase and performed a more constant shooting (i.e., smaller precision index). However, the increased number of fingers did not affect the release time, which may influence the consistency of terminal performance. Thus, the number of fingers led to positive results for the current task.

A Study of STEAM Education for Elementary Science Subject with Robots (교육용 로봇을 활용한 초등학교 과학교과의 STEAM교육 수업 방안)

  • Hong, Ki-Cheon;Shim, Jae-Kuk
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.1
    • /
    • pp.83-91
    • /
    • 2013
  • The Ministry of Education issues STEAM education as a part of convergence. Most important is "How to achieve goals of STEAM education". The goal of this paper searches possibilities that robot is a good tool for STEAM education. The main topic is photosynthesis unit as circumstantiation and "Deep sea exploration robot", is creative activity, in elementary science subject. Students complete 13 basic course about robot, then accomplish subject-oriented 10 robot application course about above topic. Basic course contains math and science elements that students learn in regular curriculum. Application course is organized following steps, photosynthesis with oxygen sensors, brainstorming, idea derivation, robot design, robot construction, demo and presentation and so on. These courses have elements of STEAM. Finally teacher has face-to-face meeting with parents and students. Most have positive aspects about this process in terms of creativity, study attitude, and school life. Specially low-ranking students win a prize in robot competition. So they can gain confidence and accomplishment. This paper don't show statistic chart, but we surely knew that robot education for STEAM education seriously affect creativity huminity and job search.

  • PDF

The Analysis of Children's Understanding of Addition and Subtraction of Fractions (분수의 덧셈과 뺄셈에 대한 아동의 이해 분석)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.707-734
    • /
    • 2009
  • The purpose of the study was to investigate how children understand addition and subtraction of fractions and how their understanding influences the solutions of fractional word problems. Twenty students from 4th to 6th grades were involved in the study. Children's understanding of operations with fractions was categorized into "joining", "combine" and "computational procedures (of fraction addition)" for additions, "taking away", "comparison" and "computational procedures (of fraction subtraction)" for subtractions. Most children understood additions as combining two distinct sets and subtractions as removing a subset from a given set. In addition, whether fractions had common denominators or not did not affect how they interpret operations with fractions. Some children understood the meanings for addition and subtraction of fractions as computational procedures of each operation without associating these operations with the particular situations (e.g. joining, taking away). More children understood addition and subtraction of fractions as a computational procedure when two fractions had different denominators. In case of addition, children's semantic structure of fractional addition did not influence how they solve the word problems. Furthermore, we could not find any common features among children with the same understanding of fractional addition while solving the fractional word problems. In case of subtraction, on the other hand, most children revealed a tendency to solve the word problems based on their semantic structure of the fractional subtraction. Children with the same understanding of fractional subtraction showed some commonalities while solving word problems in comparison to solving word problems involving addition of fractions. Particularly, some children who understood the meaning for addition and subtraction of fractions as computational procedures of each operation could not successfully solve the word problems with fractions compared to other children.

  • PDF

Application and Development of Convergence Program for Congruence and Symmetry Teaching (합동과 대칭의 지도를 위한 융합 프로그램 개발 및 적용)

  • Lee, Ji Hae;Sihn, Hang Gyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.3
    • /
    • pp.267-282
    • /
    • 2018
  • The purpose of this study is to develop and apply a Convergence program for teaching of congruence and symmetry and to investigate the effects of the mathematical creativity and convergence talent. For these purposes, research questions were set up as follows: 1. How is a Convergence program for teaching of congruence and symmetry developed? 2. How does a Convergence program affect the mathematics creativity and convergence talent of fifth grade student in elementary school? The subjects in this study were 16 students in fifth-grade class in elementary school located in Songpa-gu, Seoul. A Convergence program was developed using the integrated unit design process chose the concept of congruence and symmetryas its topic. The developed program consisted of a total 12 class activities plan, lesson plans for 5 activities. Mathematics creativity test, a test on affective domain related with convergence talent measurement were carried out before and after the application of the developed program so as to analyze the its effects. In addition, students' satisfaction for the developed program was investigated by a questionnaire. The results of this study were as follows: First, A convergence program should be developed using the integrated unit design process to avoid focusing on the content of any one subject area. The program for teaching of congruence and symmetry should be considered students' learning style and their preferences for media. Second, the convergence program improved the students' mathematical creativity and convergence talent. Among the sub-factors of mathematical creativity, originality was especially improved by this program. Students thought that the program is good for their creativity. Plus, this program use two subject class, Math and Art, so student do not think about one subject but focus on topic 'congruence and symmetry'. It help students to develop their convergence talent.

  • PDF

A Longitudinal Study on the Influence of Attitude, Mood, and Satisfaction toward Mathematics Class on Mathematics Academic Achievement (수학수업 태도, 분위기, 만족도가 수학 학업성취도에 미치는 영향에 대한 종단연구)

  • Kim, Yongseok
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.525-544
    • /
    • 2020
  • There are many factors that affect academic achievement, and the influences of those factors are also complex. Since the factors that influence mathematics academic achievement are constantly changing and developing, longitudinal studies to predict and analyze the growth of learners are needed. This study uses longitudinal data from 2014 (second year of middle school) to 2017 (second year of high school) of the Seoul Education Longitudibal Study, and divides it into groups with similar longitudinal patterns of change in mathematics academic achievement. The longitudinal change patterns and direct influence of mood and satisfaction were examined. As a result of the study, it was found that the mathematics academic achievement of the first group (1456 students, 68.3%) including the majority of students and the second group (677 students) of the top 31.7% had a direct influence on the mathematics class attitude. It was found that the mood and satisfaction of mathematics classes did not have a direct effect. In addition, the influence of mathematics class attitude on mathematics academic achievement was different according to the group. In addition, students in group 2 with high academic achievement in mathematics showed higher mathematics class attitude, mood, and satisfaction. In addition, the attitude, atmosphere, and satisfaction of mathematics classes were found to change continuously from the second year of middle school to the second year of high school, and the extent of the change was small.

An analysis of characteristics of the perception for mathematics learning of Korean language learners in 6th grade of elementary school (초등학교 6학년 한국어학습자의 수학 학습에 대한 인식의 특성 분석)

  • Do, Joowon
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.529-542
    • /
    • 2021
  • The purpose of this research is to compare the mathematical beliefs that directly or indirectly affect the mathematics learning of Korean languge learners with those of non-Korean languge learners and identify the characteristics. To this end, an analytical comparative research was conducted through a questionnaire survey on perceptions of mathematics learning for 6th grade students of elementary school with different cultural and linguistic backgrounds in the same mathematics classroom. As a result of the analysis, Korean languge learners and non-Korean languge learners gave different meanings to learning mathematics, and they recognized various meanings of success in mathematics. In addition, the math learning ability of non-Korean learners was evaluated higher than that of Korean learners. Based on their positive beliefs, they decided how to resolve conflict situations with different problem-solving results. It will be necessary to prepare a teaching/learning plan that can fully implement multicultural mathematics education in the mathematics classroom where Korean language learners with different cultural and linguistic backgrounds belong. The results of this research can contribute to raising awareness of the need for follow-up researches to find ways to reduce the learning gap between Korean languge learners and non-Korean languge learners. It is expected that this research will contribute to understanding the perceptive characteristics of Korean language learners about learning mathematics and to prepare a plan to utilize them in mathematics lessons.