• 제목/요약/키워드: material softening

검색결과 284건 처리시간 0.025초

철근콘크리트 판넬의 인장강화효과 (Tension Stiffening Effect in Reinforced Concrete Panels)

  • 곽효경;김도연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.141-148
    • /
    • 1998
  • An analytical model which can simulate the post-cracking behavior of reinforced concrete structures subjected to in-plane shear and normal stresses is presented. Based on the force equilibriums, compatibility conditions, and bond stress-slip relationship between steel and concrete, a criterion to simulate consider the tension-stiffening effect is proposed. The material behavior of concrete is described by an orthotropic constitutive model, and focused on the tension-compression region with tension-stiffening and compression softening effects defining equivalent uniaxial relations in the axes of orthotropy. Correlation studies between analytical results and available experimental data are conducted with the objective to establish the validity of the proposed model.

  • PDF

Nonlinear instability problems including localized plastic failure and large deformations for extreme thermo-mechanical loads

  • Ngo, Van Minh;Ibrahimbegovic, Adnan;Hajdo, Emina
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.89-110
    • /
    • 2014
  • In this work we provide the theoretical formulation, discrete approximation and solution algorithm for instability problems combing geometric instability at large displacements and material instability due to softening under combined thermo-mechanical extreme loads. While the proposed approach and its implementation are sufficiently general to apply to vast majority of structural mechanics models, more detailed developments are provided for truss-bar model. Several numerical simulations are presented in order to illustrate a very satisfying performance of the proposed methodology.

사암계 석탄폐석을 활용한 E-glass fiber 조성의 유리 제조 및 특성 (Fabrication and characterization of glass with E-glass fiber composition by using silica-alumina refused coal ore)

  • 이지선;임태영;이미재;황종희;김진호;현승균
    • 한국결정성장학회지
    • /
    • 제23권4호
    • /
    • pp.180-188
    • /
    • 2013
  • 삼척도계지역의 탄광에서 석탄채굴시에 부산물로 발생되는 사암계 석탄폐석을 원료로 사용하여 E-glass fiber 조성의 유리를 제조하였다. 본 연구에서는 카본함량이 비교적 적은 실리카-알루미나질의 사암계 석탄폐석을 사용하였으며, 폐석의 투입량을 0~35 %까지 변화시켰다. 서로 다른 석탄폐석 투입량을 갖는 배치원료를 $1550^{\circ}C$에서 2시간 용융하여 E-glass조성을 갖는 투명하고 맑은 유리가 얻어졌고, 81~84 %의 높은 가시광투과율, $5.39{\sim}5.61{\times}10^{-6}/^{\circ}C$의 열팽창계수, 851~$860^{\circ}C$의 연화점을 나타내었다. 유리섬유 시편은 $1150^{\circ}C$에서 섬유인상장치를 통해 얻어졌고, 복합재료의 보강용 유리섬유로서 내화학성 시험과 기계적 특성평가를 위한 인장강도를 측정하였다. 그 결과 석탄폐석을 사용한 E-glass fiber의 특성이 석탄폐석을 사용하지 않은 보통 E-glass 섬유에 비해 충분히 양호한 특성을 나타내어 E-glass 섬유용 원료로서 석탄폐석의 활용가능성을 확인할 수 있었다.

붕소를 함유하지 않는 E-glass fiber의 제조 및 특성에 대한 연구 (Fabrication and characterization of boron free E-glass fiber compositions)

  • 이지선;임태영;이요셉;이미재;황종희;김진호;현승균
    • 한국결정성장학회지
    • /
    • 제23권1호
    • /
    • pp.44-50
    • /
    • 2013
  • E-glass 섬유는 항공기, 자동차, 레져기구의 복합재료 보강용으로 가장 널리 사용되는 유리섬유이다. 그러나 최근 E-glass 섬유의 원재료비 상승, 환경문제 및 화학적 저항성과 기계적 특성을 향상시키기 위해 산화붕소 함량을 8 %에서 0(제로)까지 감소시키는(소위 'Boron free E-glass'라고 불리는) 연구가 진행되고 있다. 본 연구에서는 'BF(Boron free E-glass)' 조성의 벌크유리와 섬유유리를 제조하고, 열적특성 및 광학적특성을 평가하였다. 5~10 %의 서로 다른 알루미나 함량을 갖는 배치를 $1550^{\circ}C$에서 2시간 용융하여 'BF(Boron free E-glass)'가 얻어졌고, 81~86 %의 높은 가시광투과율, $4.2{\sim}4.9{\times}10^{-6}/^{\circ}C$의 낮은 열팽창계수, $907{\sim}928^{\circ}C$의 연화점을 갖는 투명하고 맑은 유리가 얻어졌다. 'BF' 섬유 시편에 대한 화학적내구성 시험에 있어서는 알루미나 함량이 높아질수록 더 좋은 침식저항성을 나타냄을 확인할 수 있었다.

전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측 (Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density)

  • 김재훈;김덕희
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.166-175
    • /
    • 2002
  • Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

치과용 지르코니아 도재의 Li2O 첨가에 따른 열팽창계수 변화 (A Change of Thermal Expansion Coefficient according to Li2O-added Porcelain for Dental Zirconia)

  • 한석윤
    • 대한치과기공학회지
    • /
    • 제31권4호
    • /
    • pp.25-30
    • /
    • 2009
  • Zirconia($ZrO_2$) has attracted much attention in science and technology because of its high refractive index, high melting temperature, hardness, low thermal conductivity and corrosion barrier properties. And it is widely used as the dental restoration material because of its esthetic appearance. In this research, we analyzed the particle size and composition of the imported dental porcelain for zirconia. And the glass frit was produced. To decrease the glass transition temperature and softening temperature of the glass frit, $Li_2O$ was added into it and the effect of $Li_2O$ on the firing temperature was researched. Then the glass which contains leucite crystal with a high coefficient of thermal expansion(CTE) was manufactured and it was mixed with the glass frit to control the CTE. The phase composition were analyzed using the X-ray diffraction. The morphologies of the samples were observed by the scanning electron microscope. The 4wt% $Li_2O$-added glass frit has the optimal glass transition temperature and softening temperature. And 6 wt% leucite crystal was mixed with the glass frit to control the CTE. From the experimental results of crystallization, the crystal phase was found only leucite crystal.

  • PDF

고강도 저합금강의 저주기 피로특성 (Low Cycle Fatigue Characteristics of High Strength Low Alloy Steel)

  • 김재훈;김덕회;이종현;조성석;전병환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.169-174
    • /
    • 2001
  • Low cycle fatigue tests are performed on high strength low alloy steels that be developed for submarine material. The relation between absorbed plastic strain energy and numbers of cycle to failure is examined in order to predict the low cycle fatigue life of structural steels by using plastic strain energy method. The cyclic properties are determined by a least square fit techniques. The life predicted by the plastic strain energy method is found to coincide with experiment data and results obtained from the Coffin-Manson method. Also the cyclic behavior of structural steels is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of structural steels are investigated according to changing tempering temperatures. In the case of PFS steels, the $\varepsilon$-Cu is formed in 550C of tempering temperature and enhances the low cycle fatigue properties.

  • PDF

HT60급 TMCP강 용접부의 피로 거동 (Fatigue Behavior of Welded Joints in HT60 Grade TMCP Steel)

  • 용환선;김석태;조용식
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.133-133
    • /
    • 1996
  • Application of the relationship $da/dN=C({\Delta}K)^{m}$ is effective in the analysis of fatigue crack growth life. The values of material constant C and m have great influences on the predicted fatigue life and the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(${\Delta}K$) is effective in fatigue crack growth behavior. In this paper, fatigue crack growth behavior of the welded joints in HT60 grade TMCP(Thermo Machanical Control Process) steel have been studied. To evalute the fatigue crack growth rates of HT60 grade TMCP steel, fatigue test was performed by base metal(BM), heat affected zone(HAZ) and weld metal(WM) in TMCP steel at room temperature. We determined the relationship of $da/dN-{\Delta}K$ by correlation between C and m obtained from the Paris-Erdogan power law data supplied HT60 grade TMCP steel. The obtained results from this study indicate that fatigue crack growth rate of TMCP steel is not influenced by softening effect which occurs in the HAZ when high heat input weld is carried out. Softening effects, which affect fatigue properties. are shown that it is not affected to the fatigue growth rates significantly.

  • PDF

고추의 성숙에 따른 세포벽 다당류의 변화와 ${\beta}-Galactosidase$ Isozymes의 분리 (Ripening Related Changes in Hot Pepper Fruit Cell Walls Structural Alterations of Cell Wall Polysaccharides and Separation of Galactosidase Isozymes)

  • 김순동;강명수;김광수
    • 한국식품영양과학회지
    • /
    • 제14권2호
    • /
    • pp.157-163
    • /
    • 1985
  • Various cell wall polysaccharides and related enzyme activities in hot pepper fruit were determined at different stages of maturity. The uronic acid content of cell walls decreased between immature green and turning stage fruit and then increased by red ripe stage. In contrast, cellulose content of cell walls changed only a little during ripening. Total neutal sugar content of cell wall material decreased 50% and galactose content of the walls decreased about 80% by the turning stage. Polygalacturonase and ${\beta}-galactosidase$ activities, as well as total hemicellulose from isolated cell walls of ripening hot pepper fruit were studied using gel filtration chromatography. Polygalacturonase activity was not detectable but 5 isozymes of ${\beta}-galactosidase$ were resolved. The activities of the enzymes were relatively high and gel filtration showed that they differed in molecular weight. Hemicellulose content decreased during ripening and softening. The molecular weight profiles shifted from high molecular weight to low molecular weight polymers during ripening. The changes in cell walls that may be associated with fruit softening involve the alteration of hemicellulose prior to the degradation of wall-bound uronic acid. It is suggested that the decrease in cell wall galactose involved changes in turnover of new cell wall components.

  • PDF

Seismic performance of reinforced engineered cementitious composite shear walls

  • Li, Mo;Luu, Hieu C.;Wu, Chang;Mo, Y.L.;Hsu, Thomas T.C.
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.691-704
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are commonly used for building structures to resist seismic loading. While the RC shear walls can have a high load-carrying capacity, they tend to fail in a brittle mode under shear, accompanied by forming large diagonal cracks and bond splitting between concrete and steel reinforcement. Improving seismic performance of shear walls has remained a challenge for researchers all over the world. Engineered Cementitious Composite (ECC), featuring incredible ductility under tension, can be a promising material to replace concrete in shear walls with improved performance. Currently, the application of ECC to large structures is limited due to the lack of the proper constitutive models especially under shear. In this paper, a new Cyclic Softening Membrane Model for reinforced ECC is proposed. The model was built upon the Cyclic Softening Membrane Model for reinforced concrete by (Hsu and Mo 2010). The model was then implemented in the OpenSees program to perform analysis on several cases of shear walls under seismic loading. The seismic response of reinforced ECC compared with RC shear walls under monotonic and cyclic loading, their difference in pinching effect and energy dissipation capacity were studied. The modeling results revealed that reinforced ECC shear walls can have superior seismic performance to traditional RC shear walls.