• Title/Summary/Keyword: material models

Search Result 2,225, Processing Time 0.024 seconds

Composed material models for nonlinear behavior of reinforced concrete

  • Dede, Tayfun;Ayvaz, Yusuf
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.303-318
    • /
    • 2013
  • The purpose of this study is to present different composed material models for reinforced concrete structures (RC). For this aim a nonlinear finite element analysis program is coded in MATLAB. This program contains several yield criteria and stress-strain relationships for compression and tension behavior of concrete. In this study, the well-known criteria, Drucker-Prager, von Mises, Mohr Coulomb, Tresca, and two new criteria, Hsieh-Ting-Chen and Bresler-Pister, are taken into account. It is concluded that the coded program, the new yield criteria, and the models considered can be effectively used in the nonlinear analysis of reinforced concrete beams.

Structural performance assessment of deteriorated reinforced concrete bridge piers

  • Kim, T.H.
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.387-403
    • /
    • 2014
  • The aim of this study is to assess the structural performance of deteriorated reinforced concrete bridge piers, and to provide method for developing improved evaluation method. For a deteriorated bridge piers, once the cover spalls off and bond between the reinforcement and concrete has been lost, compressed reinforcements are likely to buckle. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze reinforced concrete structures. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. Advanced deteriorated material models are developed to predict behaviors of deteriorated reinforced concrete. The proposed numerical method for the structural performance assessment of deteriorated reinforced concrete bridge piers is verified by comparing it with reliable experimental results. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of deteriorated reinforced concrete bridge piers.

Evaluation of Models for Estimating Shrinkage Stress in Patch Repair System

  • Kristiawan, Stefanus A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • Cracking of repair material due to restraint of shrinkage could hinder the intended extension of serviceability of repaired concrete structure. The availability of model to predict shrinkage stress under restraint condition will be useful to assess whether repair material with particular deformation properties is resistance to cracking or not. The accuracy in the prediction will depend upon reliability of the model, input parameters, testing methods used to characterize the input parameters, etc. This paper reviews a variety of models to predict shrinkage stress in patch repair system. Effect of creep and composite action to release shrinkage stress in the patch repair system are quantified and discussed. Accuracy of the models is examined by comparing predicted and measured shrinkage stress. Simplified model to estimate shrinkage stress is proposed which requires only shrinkage property of repair material as an input parameter.

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

Towards inferring reactor operations from high-level waste

  • Benjamin Jung;Antonio Figueroa;Malte Gottsche
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2704-2710
    • /
    • 2024
  • Nuclear archaeology research provides scientific methods to reconstruct the operating histories of fissile material production facilities to account for past fissile material production. While it has typically focused on analyzing material in permanent reactor structures, spent fuel or high-level waste also hold information about the reactor operation. In this computational study, we explore a Bayesian inference framework for reconstructing the operational history from measurements of isotope ratios from a sample of nuclear waste. We investigate two different inference models. The first model discriminates between three potential reactors of origin (Magnox, PWR, and PHWR) while simultaneously reconstructing the fuel burnup, time since irradiation, initial enrichment, and average power density. The second model reconstructs the fuel burnup and time since irradiation of two batches of waste in a mixed sample. Each of the models is applied to a set of simulated test data, and the performance is evaluated by comparing the highest posterior density regions to the corresponding parameter values of the test dataset. Both models perform well on the simulated test cases, which highlights the potential of the Bayesian inference framework and opens up avenues for further investigation.

Seismic Performance Evaluation of Masonry-Infilled Frame Structures using Equivalent Strut Models (등가 스트럿 모델을 이용한 조적조 채움벽 골조의 내진성능평가)

  • Park, Ji-Hun;Jeon, Seong-Ha;Kang, Kyung-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.47-59
    • /
    • 2012
  • The seismic performance of masonry-infilled frame structures, typical in school buildings, is evaluated through equivalent strut models. A bare frame model, concentric strut models and eccentric strut models with various material characteristics available in the literature are analyzed. Displacements and damage states at the performance points obtained by the capacity spectrum method show great differences among the models. Infill walls act positively in concentric strut models and negatively in eccentric strut models at the performance points for a given seismic demand. In addition, the behavior at the ultimate displacements shows considerably different strengths, inter-story drifts, and numbers and locations of damaged members among various modeling methods and material strengths.

Nonlinear Analysis of Reinforced Concrete Members using Plasticity with Multiple Failure Criteria (다중 파괴기준의 소성모델을 이용한 철근콘크리트부재의 비선형 해석)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.145-154
    • /
    • 1995
  • Concrete has two different failure mechanisms : compressive crushing and tensile cracking. Concrete models should use the two different failure criteria to analyze the inelastic behavior of concrete including multiaxial crushing and tensile cracking. Concrete models used in this study are based on plasticity with multiple failure criteria of compressive crushing and tensile cracking. For tensile cracking behavior, two different plasticity models are investigated. The* ,e are rotating-crack and fixed-crack plasticity models, classified according to idealization of crack 0rientat:ions. The material models simplify inelastic behavior of concrete for plane stress problenls. The material models are used for the finite element anlaysis. Analytical results are compared with several experiments of reinforced concrete member. The advantages and disadva.ntages of rotating-crack and fixed -crack plasticity models are discussed.

Free vibration analysis of damaged beams via refined models

  • Petrolo, Marco;Carrera, Erasmo;Alawami, Ali Saeghier Ali Saeed
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.95-112
    • /
    • 2016
  • This paper presents the free vibration analysis of damaged beams by means of 1D (beam) advanced finite element models. The present 1D formulation stems from the Carrera Unified Formulation (CUF), and it leads to a Component-Wise (CW) modelling. By means of the CUF, any order 2D and 1D structural models can be developed in a unified and hierarchical manner, and they provide extremely accurate results with very low computational costs. The computational cost reduction in terms of total amount of DOFs ranges from 10 to 100 times less than shell and solid models, respectively. The CW provides a detailed physical description of the real structure since each component can be modelled with its material characteristics, that is, no homogenization techniques are required. Furthermore, although 1D models are exploited, the problem unknown variables can be placed on the physical surfaces of the real 3D model. No artificial surfaces or lines have to be defined to build the structural model. Global and local damages are introduced by decreasing the stiffness properties of the material in the damaged regions. The results show that the proposed 1D models can deal with damaged structures as accurately as a shell or a solid model, but with far lower computational costs. Furthermore, it is shown how the presence of damages can lead to shell-like modal shapes and torsional/bending coupling.

Determination of Material Parameters for Microstructure Prediction Model Based on Recystallization and Grain Growth Behaviors (재결정 및 결정립 성장거동을 기초한 조직예측 모델에 대한 변수 결정방법)

  • Yeom, J.T.;Kim, J.H.;Hong, J.K.;Park, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.270-273
    • /
    • 2009
  • This work describes a method of determining material parameters included in recrystallization and grain growth models. Focus is on the recrystallization and grain growth models of Ni-Fe base superalloy, Alloy 718. High temperature compression tests at different strain, strain rate and temperature conditions were chosen to determine the material parameters of dynamic recrystallization model. The critical strain and dynamically recrystallized grain size and fraction at various process variables were quantitated with the microstructual analysis and strain-stress relationships of the compression tests. Besides, isothermal heat treatments were utilized to fit the material constants included in the grain growth model. Verification of the determined material parameters is carried out by comparing the measured data obtained from other compression tests.

  • PDF

Material Classification Using Reflected Signal of Ultrasonic Sensor (초음파의 반사 신호를 이용한 실내환경의 재질 인식)

  • Kim Dal-Ho;Lee Sang-Ryong;Lee Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.580-584
    • /
    • 2006
  • Material information for environment may be useful to accomplish mobile robot localization. A procedure to classify a set of indoor materials (glass, steel, wood, aluminum and concrete) with the reflected signal of ultrasonic sensor is proposed in this paper. The main idea is to use material-specific reflection characteristics for the recognition of material type. To achieve the classification task, we modeled reflected signal as a maximum amplitude with respect to distance. In this way, we can generate echo signal models for the given materials and these models are used to compare with the current sensor reading. The experimental results show that the proposed method may give material information during map building task of mobile robot.