• 제목/요약/키워드: material extrusion

검색결과 374건 처리시간 0.023초

Cu/Al 및 Fe/Al 층상복합재료 압출공정에서 구성재료의 불균일 변형 (Inhomogeneous Deformation Between Construction Materials in the Cu/Al and Fe/Al Co-extrusion Processes)

  • 서정민;노정훈;민경호;황병복;함경춘;장동환
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.530-537
    • /
    • 2007
  • This paper is concerned with the analysis of plastic deformation of bimetal co-extrusion process. Two sets of material combination have been adopted for analysis, i.e. combinations of Cu/Al and Fe/Al. In the first set of material combination, the selected materials are AA 1100 aluminum alloy as hard material and CDA 110 as soft one. This type of material selection is to examine the effect of hard core and soft sleeve and vice versa on the deformation pattern in terms of plastic zone and velocity discontinuity along the contact surface between construction materials. Four different cases of co-extrusion process in terms of material combination and interference bonding were simulated to investigate the effect of material arrangement between core and sleeve, and of bonding on the plastic zones and velocity discontinuity. In the other set of material combination, model materials used as core and sleeve were AA 1100 and AISI 1010, which are relatively soft and hard, respectively. Process parameters except diameter ratio of core to sleeve material such as semi-die angle, reduction in area in global sense and die comer radius have been set constant throughout the simulation to concentrate our effort on the analysis of influence of diameter ratio on deformation behavior such as deformation zone, surface expansion, exit velocity discontinuity between composite materials, and extrusion forces.

직접압출에 의한 Cu-Al 층상 복합재료 봉의 금속유동과 계면접합 (Metal Flow and Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion)

  • 윤여권;김희남
    • 한국정밀공학회지
    • /
    • 제18권6호
    • /
    • pp.166-173
    • /
    • 2001
  • Composite materials consists of two or more different material layers. The usefulness of clad metal rods forms the possibilities of combination of properties of different metals. Copper clad aluminum composite materials are being used for economic and structural purpose. In this study, composite billet consists of commercially pure copper and aluminum(A6061) and experimental conditions consist of the combinations of clad thickness, extrusion ratio, and semi-cone angle of die. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios, semi-cone angles of die, and composition rate of Cu:Al.

  • PDF

알루미늄 압출공정에서의 변형이방성에 대한 연구 (Deformation Induced Anisotropy in Profile Extrusion of Aluminium Alloys)

  • 이창희;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.37-41
    • /
    • 2000
  • Extruded Profiles of Aluminum alloys have been widely used as parts and frames in mechanical and construction structures. Nowadays, mechanical processing of extruded Al alloy profiles is often employed for various industrial applications. Especially, the bending process is more and more applied and the process is greatly influenced by the distributed mechanical properties in the extruded profiles. Due to large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropy properties play a great role in the bending process, as a post processing of extruded profiles and errors will be involved when the extruded profiles are treated as isotropic material, ignoring the induced anisotropy in the thin-walled extruded product. In the present work, the anisotropic material change is simulated, as a simplified method, employing Barlats six-component yield criterion in the rigid-plastic finite element method. Finite element computations are carried out for extrusion of a thin-walled part.

  • PDF

변형가시화법을 이용한 열간 축대칭 평금형 압출의 실험적 해석 (An Experimental Analysis for Axisymetric Hot Extrusion Through Square Dies Using Visioplasticity Method)

  • 엄태복;한철호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.107-113
    • /
    • 1995
  • To investigate the behavior of platic deformation inaxisymmetric hot extrusion through square dies, the physical modelling with the plasticine as a model material is carried out at the room temperature. Some mechanical properties of the model material are determined by compression and ring compression tests. Visioplasticity method using experimetal grid distortion is introduced to anlayze the plastic flow, strain rate and strain distribution.

  • PDF

평금형을 이용한 축대칭 열간 압출의 유한요소해석 (Finite Element Analysis of Axisymmetric Hot Extrusion Through Square Dies)

  • 강연식;박치용;양동열
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.207-225
    • /
    • 1992
  • The study is concerned with the thermo-viscoplastic finite element analysis of axisymmetric forward hot extrusion through square dies. The problem is treated as a nonsteady state problem because the distribution of temperature and material properties are continuously changing with the punch travel. In square die extrusion, difficulties arise from the severe distortion and die interference of elements at the aperture rim of the die even with a small punch travel. And finite element computation is impossible without intermittent remeshing. Accordingly, an automatic remeshing technique is proposed by employing specially designed mesh structure near the aperture rim. The analysis of temperature distribution includes heat conduction through material interfaces, heat convection and radiation to the atmosphere and is carried out by decoupling the heat analysis from the analysis of the deformation. The extrusion load and the distributions of strain rate and temperature are computed for the given cases rendering reasonable results. Computed grid distortions are found to be in good agreement with the experimental results. It has been thus shown that the proposed method of analysis can be effectively applied to the axisymmetric hot extrusion through square dies.

난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험 (Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part)

  • 진철규
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

컵-컵형 축대칭 복합압출에 관한 실험적연구 (An Experimental Study for the CUP-CUP Axisymmetric Combined Extrusion)

  • 김영득;한철호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.175-182
    • /
    • 1994
  • Effect of some process variables including area reduction, stroke advance, materials on the extrusion load, plastic flow and height ratio of upper to lower extruded parts in the cup-cup axisymmetric extrusion were experimentally investigated and analyzed. Deformed pattern is visualized by grid-marking technique using half-cut billets splitted. The influence of using split specimen and original specimen on the extrusion load and height ratio is examined by experiment.

  • PDF

고온초전도 BSCC02223 장선재 제조를 위한 압출공정의 최적화 (Optimization of extrusion process for long-length multi-filaments of BSCCO 2223 superconductor tape)

  • 조기현;최종웅;유재무;고재웅;김해두
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.230-235
    • /
    • 2000
  • The extrusion process for long-length multi-filaments of BSCCO 2223 superconductor tape has been investigated with aids of Finite Element Method and experimental inspection. Since the arrangement of filaments in matrix material has characteristic of rotational symmetry, a 2-dimensional commercial FEM package, DEFORM-2D, was adopted to simulate extrusion process with different variables such as hardness of sheath material, lengths of each filament and arrangement. From the FEM analysis, since the inner filaments move faster than the outer one, distribution of filaments is needed to be optimized. In the case of pure Ag matrix, undesirable non-uniform distribution of filament was obtained due to low hardness of sheath material. Dummy sample(brass (sheath) and talc powder(filament)), however, which has relatively high hardness of sheath material, had been produced with desirable results. Therefore, it is necessary to optimize hardness of sheath material, extrusion temperature and billet design.

  • PDF

폐지를 활용한 재생 플라스틱 (Composite Material made of Recycling Paper and Plastics)

  • 윤승원;이장용;김윤식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.697-702
    • /
    • 2002
  • Composite material made of recycling paper and plastics was developed. The tension and bending testing result of developed composite material shows that the cellulose contained in paper contributes much to get high flexural rigidity. As an application example, the raised access floor for office automation purpose was developed by making use of developed composite material. Manufacturing process together with the extrusion die and the compression die for to manufacture the access floor have been developed.

  • PDF

COMBINED FORWARD-BACKWARD EXTRUSION WITH CONTROLLED REVERSAL RAM MOTION -Effect of Reversal Ram Motion-

  • Hanami S.;Matsumoto R.;Otsu M.;Osakada K.;Hayashida D.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.162-166
    • /
    • 2003
  • In combined forward-backward extrusion with controlled forward speed by a counter punch, accurate parts with forward rod can be formed. As an extension of this method, reverse extrusion is proposed, in which the extruded forward rod is pushed back while the main punch is kept at the final position after the forward-backward extrusion process. The experiment is carried out using lead as a model material. With the reverse extrusion method, longer forward rods can be formed without under-filling defect than that by combined extrusion with controlling extrusion speed.

  • PDF