• Title/Summary/Keyword: material Intensity

Search Result 1,575, Processing Time 0.024 seconds

Emitting Properties in Poly(3-hexylthiophene) by Heat treatment (열처리한 poly(3-hexylthiophene)의 발광특성)

  • Kim, Dae-Jung;Kim, Ju-Seung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.137-140
    • /
    • 2001
  • To improve structural properties and induce higher conductivity, we have annealed emitting layer. The temperature condition was investigated by various experiment. To observe the surface morphology of emitting layer, measured the AFM and the X -ray diffraction pattern of P3HT film is shown. It is move to slightly low angles and diffraction peaks also become much sharper. After annealing of emitting layer, EL intensity and Voltage-current-luminance curve is better as compared with untreated. But PL intensity was decreased. It is known that by emission principal. After annealing of emitting layer, EL devices enhances the interface adhesion between the emissive polymer and Indium-tin-oxide electrode, which takes a critical role to improve the emitting properties of EL devices.

  • PDF

Design and simulation of small size high-Tc superconducting magnet (소형 고온 초전도 마그넷 설계 및 시뮬레이션)

  • 김민기;강형곤;정동철;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.192-197
    • /
    • 1994
  • High-Tc superconducting magnet properties were dependent upon design conditions such as its radius, length, critical current and notch size. In order to study, design and the simulation for small size magnet were implemented. We know that intensity of magnetic fields controled by critical current and factor ${\alpha}$( R$_2$/R$_1$) and uniformity controled by notch size. The optimal condition of intensity and uniformity magnetic field in this experiments are R$_1$=3[cm], R$_2$=12[cm], Z=10[cm], ${\alpha}$=4, notch=6[cm], critical current=12[A].

Morphological Analysis of the Rubbed Surface for Hydraulic Driving Material (유압구동 부재의 마찰면 형상해석)

  • 원두원;배효준;조연상;박흥식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.404-409
    • /
    • 2000
  • The determination of surface morphology is believed to be extremely important in the areas of contact mechanics, adhesion and friction. In order to describe morphology of various rubbed surface, the wear test was carried out under different experimental conditions in lubricating wear. And fractal descriptors was applied to rubbed surface of hydraulic driving material with image processing system. These descriptors to analyze surface structure are fractal dimension. Surface fractal dimension can be determined by sum of intensity difference of surface pixel. Morphology of rubbed surface can be effectively obtained by fractal dimensions.

  • PDF

A Experimental Study on Strength Properties of Mortar using Waste Wood (폐목질을 사용한 모르터의 강도특성에 관한 실험적 연구)

  • 황병준;공민호;정근호;김성식;이영도;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.73.1-76
    • /
    • 2003
  • Recently, as the alternatives to preserve environment such as effective usage of wastes or unusable resources are drawing attentions, researches and measures for the two tasks, which are reuse of waste wood and development of eco-friendly materials, are being examined and established in various fields. However, they are still insufficient. Therefore, in this study, for the efficient application of waste woods and eco-friendly effects, mortar was produced using sawdust as the waste wood and mineral material cement for combination, in order to produce inorganic boards using waste woods. which were made when sawing. This study attempted to suggest a basic material about the physical properties of mortar, which used waste woods, after examining the features of wood mixture rate, water-cement rate, consolation according to the mixture rate of the setting accelerator, specific gravity, compression intensity, and bending intensity as experiment factors.

  • PDF

Preparation and Characterization of CdTe Quantum Dots (CdTe 양자점 합성과 물리적 특성 분석)

  • Kim, Hyun-Suk;Song, Hyun-Woo;Cho, Kyung-Ah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.195-197
    • /
    • 2002
  • CdTe quantum dots(QDs) were synthesized in aqueous solution by colloidal method. Photoluminescence(PL) spectra of the synthesized CdTe QDs revealed the intensity of PL peaks was stronger as the condensation time was longer. This result was thought because annealing effect by thermal energy transferred during condensation eliminated defects which act as traps and recombination centers in CdTe particle. PL intensity has stron dependence of Te precursor concentration. It confirmed the ratio of Te ion to Cd ion added during synthesis affected the particle size and size distribution of the CdTe QDs. Finally, the synthesized CdTe QDs were identified to be cubic structured CdTe quantum dots by X-ray diffraction(XRD).

  • PDF

A Study On the Factors that Affect Fatigue Crack Growth Rate in Steels - Specimen Thickness Effect - (강재의 피로균열전파율에 미치는 영향인자에 관한 연구)

  • Kim, Seon-Jin;Nam, Ki-Woo;Hong, Jin-Pyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.58-65
    • /
    • 1999
  • The effect of specimen thickness on fatigue crack growth rate was studied. The objective of the present study is to investigate the effect of specimen thickness on the fatigue crack growth behavior at various stress intensity factor ranges and also the variation of material restance to fatigue crack growth. The fatigue crack growth resistance was treated as a spatial stochastic process, which varies randomly on the crack path, Compact tension specimens with a LT orientation for structural steel were used. All testing was done at a constant stress intensity level. The experimental data were analyzed for the size effect to determine the Weibull distributions of the material resistance.

  • PDF

100Gbps Ti: LiNbO$_3$ Optical Intensity Modulator (100Gbps Ti:LiNbO$_3$ 광강도 변조기)

  • 김성구;이한영;윤형도;임상규;구경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.282-285
    • /
    • 1999
  • Fabrication and pakaging method for low delve voltage and 10Gbps Ti diffused waveguide LiNbO$_3$ optical intensity modulator are described. Optical waveguides were prepared by conventionaly electron-beam evaporation and Ti-indiffusion into Z-cut plate LiNbO$_3$. Traveling-wave electrodes were used for obtaining the wideband frequency response and impedance matching. Microwave effective index and characteristic impedance measured by time domain reflectometry and compared with the calculated value by conformal mapping. The characteristics of 10Gbps modulator at the 1550nm wavelength are as follows : perfect modulation voltage Is about 5V, optical insertion loss Is about 5dB, 3-dB bandwidth is 10GHz, and characteristic impedance is about 50$\Omega$.

  • PDF

Preparation and Characterization of CdTe Quantum Dots (CdTe 양자점 합성과 물리적 특성 분석)

  • 김현석;송현우;조경아;김상식;김성현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.663-668
    • /
    • 2003
  • CdTe quantum dots(QDs) were synthesized in aqueous solution by colloidal method. The synthesized CdTe QDs were identified to be cubic-structured ones by x-ray diffraction(XRD). The photoluminescence(PL) was performed for CdTe QDs prepared as a function of Te precursor concentration, condensation time and aging time. The PL intensity is strongly dependent on Te precursor concentration, indicating that the ratio of Te to Cd ions affects the particle size and size distribution of the CdTe QDs. Our PL study reveals that the intensity of PL peaks strengthens as the condensation time elongates, implying that annealing by thermal energy transferred during condensation would eliminate defects which act as killing centers in CdTe particles. Our photocurrent study suggests that the CdTe QDs materials are one of the prospective materials for optoelectronics including photodetectors.

Development of Photo-sensor for Integrated Lab-On-a-Chip (집적화된 Lab-On-a Chip을 위한 광센서의 제작 및 특성 평가)

  • 김주환;신경식;김용국;김태송;김상식;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.404-409
    • /
    • 2004
  • We fabricated photo-sensor for fluorescence detection in LOC. LOC is high throughput screening system. Our LOC screens biochemical reaction of protein using the immunoassay, and converts biochemical reaction into electrical signal using LIF(Laser Induced Fluorescence) detection method. Protein is labeled with rhodamine intercalating dye and finger PIN photodiode is used as photo-sensor We measured fluorescence emission of rhodamine dye and analyzed tendency of fluorescence detection, according to photo-sensor size, light intensity, and rhodamine concentration. Detection current was almost linearly proportional to two parameters, intensity and concentration, and was inversely proportional to photo-sensor size. Integrated LOC consists of optical-filter deposited photo-sensor and PDMS microchannel detected 50 (pg/${mu}ell$) rhodamine. For integrated LOC including light source, we used green LED as the light source and measured emitted fluorescence.

Pressure-temperature limit curve for reactor vessel evaluated by ASME code

  • Jhung, Myung Jo;Kim, Seok Hun;Jung, Sung Gyu
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.191-208
    • /
    • 2002
  • A comparative assessment study for a generation of the pressure-temperature (P-T) limit curve of a reactor vessel is performed in accordance with ASME code. Using cooling or heating rate and vessel material properties, stress distribution is obtained to calculate stress intensity factors, which are compared with the material fracture toughness to determine the relations between operating pressure and temperature during reactor cool-down and heat-up. P-T limit curves are analyzed with respect to defect orientation, clad thickness, toughness curve, cooling or heating rate and neutron fluence. The resulting P-T curves are compared each other.