• 제목/요약/키워드: master-slave teleoperation system

검색결과 54건 처리시간 0.031초

Impedance Control for Haptic Interface using Parameter Estimation Algorithm

  • Park, Heon;Lee, Sang-Chul;Lee, Soo-Sung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.119.1-119
    • /
    • 2001
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the feeling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/for co commands, impedance parameters are varying always. When the impedance parameters between an operator and ...

  • PDF

양방향 원격 제어 성능 시험: Peg-in-hole 및 표면 추적 (Performance of a Time-delayed Bilateral Teleoperation: Peg-in-hole and Surface Tracking)

  • 박성준;박상수;백상윤;류제하
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.789-794
    • /
    • 2014
  • This paper presents some real performance of two typical bilateral teleoperation benchmark tasks: peg-in-hole and surface tracking tasks. The tasks are performed by an energy-bounding algorithm in the master control and position-based impedance algorithm in the slave control. Performance is analyzed for the position-force tracking capabilities from free space motion to surface contacting motion. In addition, preliminary user performance is evaluated by measuring the completion time and maximum/average contact forces. The quality of the measured performance is also compared with that of other existing approaches.

Design and Stability Analysis of Impedance Controller for Bilateral Teleoperation under a Time Delay

  • Cho, Hyun-Chul;Park, Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1131-1139
    • /
    • 2004
  • A new impedance controller is proposed for bilateral teleoperation under a time delay. The proposed controller does not need to measure or estimate the time delay in the communication channel using the force loop-back. In designing a stable impedance controller, absolute stability is used as a stability analysis tool, which results in a less conservative controller than the passivity concept. Moreover, in order to remove the conservatism associated with the assumption of infinite port impedances, the boundaries of human and environment impedance are set to finite values. Based on this, this paper proposes a parameter design procedure for stable impedance controllers. The validity of the proposed control scheme is demonstrated by experiments with a 1-dof master/slave system.

A Shared Compliant Control Scheme based on Internal Model Control

  • Ahn, Sung-Ho;Jin, Jae-Hyun;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1571-1574
    • /
    • 2003
  • A shared compliant control scheme based on IMC is proposed for the position-force force reflecting control system. The controller of the slave manipulator is designed by IMC method for the open loop unstable plant. The compliant control is implemented by first order low pass filter. In the proposed scheme, the slave manipulator well tracks the position of the master manipulator in free space and the compliance of the slave manipulator is autonomously controlled in contact condition. The simulation results show that the excellence of the proposed controller.

  • PDF

Robotic Floor Surface Decontamination System

  • Kim, Kiho;Park, Jangjin;Myungseung Yang
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.133-134
    • /
    • 2004
  • DUPIC (Direct Use of spent PWR fuel In CANDU) fuel cycle technology is being developed at Korea Atomic Energy Research Institute (KAERI). All the DUPIC fuel fabrication processes are remotely conducted in the completely shielded M6 hot-cell located in the Irradiated Material Examination Facility (IMEF) at KAERI. Undesirable products such as spent nuclear fuel powder debris and contaminated wastes are inevitably created during the DUPIC nuclear fuel fabrication processes.(omitted)

  • PDF

Tele-robotic Application for Nozzle Dam Maintenance Operation in Nuclear Power Plants

  • Seo, Yong-Chil;Kim, Chang-Hoi;Cho, Jae-Wan;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1520-1524
    • /
    • 2004
  • This paper describes the development of a robotic maintenance system for use in a maintenance operation of the nozzle dam in a water chamber of a steam generator at the Kori nuclear power plant in Korea. The robotic maintenance system was designed to minimize the personnel exposure to a hazardous radioactive environment. This robotic maintenance system is operated by a teleoperated control which was designed to perform the nozzle dam maintenance tasks in a remote manner without endangering the human workers. Specific maintenance tasks involve the transportation, insertion, and removal of nozzle dams in a water chamber inside a steam generator via a narrow man-way entrance port. The developed robotic maintenance system has two major subsystems: a two degrees of freedom guiding device acting as the main guiding arm and a master-slave manipulator with a kinematic dissimilarity. The mechanical design considerations, control system, and capabilities of the robotic maintenance system are presented. Finally, a graphical representation of the nozzle dam maintenance processes in a simulated work environment are also demonstrated.

  • PDF

2채널 제어 구조를 사용한 양방향 원격조종 시스템의 투명도 구현 (Transparency Implementation for Bilateral Teleoperation System by using Two-channel Control Architecture)

  • 김종현;장평훈;박형순
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1967-1978
    • /
    • 2003
  • Transparency has been considered as a performance measure in bilateral teleoperation system. Therefore, many issues of transparency have been studied. This paper investigates the transparency in two-channel control architectures. At first, we show the feasibility using analytic transparency-conditions and present the two classes of two-channel control architecture, which are perfectly transparent under ideal situation. In addition, remedies to problems due to impedance model estimation errors under real situation are introduced. They are as fellows; design guideline of control parameters to reduce the effect of model estimation error effect and introduction of time delay estimation for unknown dynamics. From these analyses, the systematic control scheme, which is stable and well transparent under real implementation, is proposed in two-channel control architecture. Finally, the proposed scheme is applied to a 2 D.O.F master-slave system and the experimental results show the validity of the theoretical work.

비 동기화된 촉각과 영상 시간지연이 원격조종로봇에 미치는 영향과 성능 향상을 위한 조언 (The Effect of Asynchronous Haptic and Video Feedback on Teleoperation and a Comment for Improving the Performance)

  • 김혁;유지환
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.156-160
    • /
    • 2012
  • In this paper, we investigate the effect of asynchronous haptic and video feedback on the performance of teleoperation. To analyze the effect, a tele-manipulation experiment is specially designed, which operator moves square objects from one place to another place by using master/slave telerobotic system. Task completion time and total number of falling of the object are used for evaluating the performance. Subjective study was conducted with 10 subjects in 16 different combinations of video and haptic feedback while participants didn't have any prior information about the amount of each delay. Initially we assume that synchronized haptic and video feedback would give best performance. However as a result, we found that the accuracy was increased when haptic and video feedback was synchronized, and the completion time was decreased when one of the feedback (either haptic or video) was decreased. Another interesting fact that we found in this experiment is that it showed even better accuracy when haptic information arrives little bit earlier than video information, than the case when those are synchronized.

5각 관절 병렬 구조를 이용한 6자유도 힘 반사형 마스터 콘트롤러 (A Six-Degree-of-Freedom Force-Reflecting Master Hand Controller using Fivebar Parallel Mechanism)

  • 진병대;우기영;권동수
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.288-296
    • /
    • 1999
  • A force-reflecting hand controller can provide the kinesthetic information obtained from a slave manipulator to the operator of a teleoperation system. The goal is to construct a compact hand controller that can provide large workspace and good force-reflecting capability. This paper presents the design and the analysis of a 6-degree-of-freedom force-reflecting hand controller using fivebar parallel mechanism. The forward kinematics of the fivebar parallel mechanism has been calculated in real-time using three pin-joint sensors in addition to six actuator position sensors. A force decomposition approach is used to compute the Jacobian. To evaluate the characteristics of the fivebar parallel mechanism, it has been compared with the other three parallel mechanisms in terms with workspace and manipulability measure. The hand controller using the fivebar parallel mechanism has been constructed and tested to verify the feasibility of the design concept.

  • PDF

복강경 수술 로봇의 힘 반향을 위한 임피던스 모델 기반의 양방향 제어 (Impedance Model based Bilateral Control for Force reflection of a Laparoscopic Surgery Robot)

  • 윤성민;김원재;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.801-806
    • /
    • 2014
  • LAS (Laparoscopy Assisted Surgery) has been substituted alternatively for traditional open surgery. However, when using a commercialized robot assisted laparoscopic such as Da Vinci, surgeons have encountered some problems due to having to depend only on information by visual feedback. To solve this problem, a haptic function is required. In order to realize the haptic teleoperation system, a force feedback and bilateral control system are needed. Previous research showed that the perturbation value estimated by a SPO (Sliding Perturbation Observer) followed a reaction force that loaded on the surgical robot instrument. Thus, in this paper, the force feedback problem of surgical robots is solved through the reaction force estimation method. This paper then introduces the possibility of the haptic function realization of a laparoscopic surgery robot using a bilateral control system. For bilateral control, the master uses an impedance control and the slave uses a SMC (Sliding Mode Control). The experiment results show that a torque and force sensorless teleoperation system can be implemented using a bilateral control structure.