• Title/Summary/Keyword: master mold

Search Result 89, Processing Time 0.024 seconds

Fabrication of Nanoscale Reusable Quartz Master for Nano Injection Molding Process (재사용 가능한 100nm급 패턴의 퀄츠 마스터 제작 및 퀄츠 마스터를 사용한 사출성형실험)

  • Choi Doo-Sun;Lee Joon-Hyoung;Yoo Yeong-Eun;Je Tae-Jin;Whang Kyung-Hyun;Seo Young Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.228-231
    • /
    • 2005
  • In this paper, we present reusable quartz master fabricated by electron-beam lithography and dry etching process of quartz, and results of injection molding based on the reusable quartz master for the manufacturing of nano-scale information media. Since patterned structures of photoresist can be easily damaged by separation (demolding) process of nickel stamper and master, a master with photoresist cannot be reused in stamper fabrication process. In this work, we have made it possible of the repeated use of master by directly patterning on quart in nickel stamper fabrication process. We have designed and fabricated four different specimens including 100nm, 140nm 200nm and 400nm pit patterns. In addition, both intaglio and embossed carving patterns are fabricated for each specimen. In the preliminary test of injection molding, we have fabricated polycarbonate patterns with varying mold temperature. We have experimentally verified the fabrication process of the reusable quart master and possibility of quartz master as direct stamper.

Development of micromolding technology using silicone rubber mold (실리콘 고무형을 이용한 미세복제기술 개발)

  • 정성일;임용관;박선준;최재영;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.46-49
    • /
    • 2003
  • Microsystem technology (MST) which originated from semiconductor processes has been widely spreaded into tile other industry such as sensors, micro fluidics and displays. The MST, however. has been troubled in spreading with its high cost and material limitations. So, in this paper, new process for micromolding technology using silicone rubber mold was introduced. Silicone rubber mold, which was fabricated by vacuum casting. can be transferred a master pattern to a final product with the same shape but different materials. In order to verify the possibility of application of silicone rubber mold to the MST, its transferability was evaluated. and then it applied to the fabrications of polishing pad and PDP barrier ribs.

  • PDF

Development of Micromolding Technology using Silicone Rubber Mold (실리콘 고무형을 이용한 미세복제기술 개발)

  • Chung, Sung-Il;Im, Yong-Gwan;Kim, Ho-Youn;Choi, Jae-Young;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1380-1387
    • /
    • 2003
  • Microsystem technology (MST) which originated from semiconductor processes has been widely spreaded into the other industry such as sensors, micro fluidics and displays. The MST, however, has been troubled in spreading with its high cost and material limitations. So, in this paper, new process for micromolding technology using silicone rubber mold was introduced. Silicone rubber mold, which was fabricated by vacuum casting, can be transferred a master pattern to a final product with the same shape but different materials. In order to verify the possibility of application of silicone rubber mold to the MST, its transferability was evaluated, and then it applied to the fabrications of polishing pad and PDP barrier ribs.

A Study on Injection Characteristic using Active Temperature Control of Injection mold (사출 금형의 능동형 온도제어에 따른 사출특성에 관한 연구)

  • Cho, C.Y.;Sin, H.G.;Hong, N.P.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.302-305
    • /
    • 2007
  • In recent years, many researches on new storage media with high capacity and information are developing. For manufacture of optical storage with high capacity, the injection molding process is generally used. In order to increase the filling ratio of the injection molding structure, the injection molding process required for high injection pressure, packing pressure and temperature control of the mold. However, conventional injection molding process is difficult to increase the filling ratio using injection master with the range of several nanometers and high aspect ratio. In order to improve and increase filling ratio of nano-structure with high aspect ratio, the active temperature control of injection mold was used. Experimental conditions were used injection pressure, time and temperature. Consequently, by using the peltier device into injection mold, we carried out the efficient and active temperature control of mold at low cost.

  • PDF

Improvement of Mold Filling in Aluminum Gravity Die Casting by Vacuum Suction (알루미늄 합금의 중력금형주조 시 진공감압을 이용한 충전성 개선)

  • Kim, Jeong-Kook;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.29 no.3
    • /
    • pp.138-143
    • /
    • 2009
  • Vacuum suction is applied to the mold during pouring in the inclined gravity die casting to remove defects such as misrun and gas porosity in the brake master cylinder. Casting defects are observed after solidification and their cause is analyzed by using the calculated results with commercial solidification and flow analysis code(ZCAST). The optimum vacuum suction is -2 cmHg, and when the start time of vacuum suction is 3 seconds after pouring, better filled result is obtained by holding it for 15 seconds. Reproducibility test under the optimum conditions attained from the above pouring tests is performed, and it is confirmed that these pouring conditions can be applied to the mass production immediately.

Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique (진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제)

  • 박상후;임태우;양동열;공홍진;이광섭
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.305-313
    • /
    • 2004
  • A vacuum pressure-difference technique for making a nano-precision replica is investigated for various applications. Master patterns for replication were fabricated using a nano-replication printing (nRP) process. In the nRP process, any picture and pattern can be replicated from a bitmap figure file in the range of several micrometers with resolution of 200nm. A liquid-state monomer is solidified by two-photon absorption (TPA) induced by a femto-second laser according to a voxel matrix scanning. After polymerization, the remaining monomers were removed simply by using ethanol droplets. And then, a gold metal layer of about 30nm thickness was deposited on the fabricated master patterns prior to polydimethylsiloxane molding for preventing bonding between the master and the polydimethylsiloxane mold. A few gold particles attached on the polydimethylsiloxane stamp during detaching process were removed by a gold selecting etchant. After fabricating the polydimethylsiloxane mold, a nano-precision polydimethylsiloxane replica was reproduced. More precise replica was produced by the vacuum pressure-difference technique that is proposed in this paper. Through this study, direct patterning on a glass plate, replicating a polydimethylsiloxane mold, and reproducing polydimethylsiloxane replica are demonstrated with a vacuum pressure-difference technique for various micro/nano-applications.

Geometric Modeling and Five-axis Machining of Tire Master Models

  • Lee, Cheol-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.75-78
    • /
    • 2008
  • Tire molds are manufactured by aluminum casting, direct five-axis machining, and electric discharging machining. Master models made of chemical wood are necessary if aluminum casting is used. They are designed with a three-dimensional computer-aided design system and milled by a five-axis machine. In this paper, a method for generating and machining a tire surface model is proposed and demonstrated. The groove surfaces, which are the main feature of the tire model, are created using a parametric design concept. An automatically programmed tool-like descriptive language is presented to implement the parametric design. Various groove geometries can be created by changing variables. For convenience, groove surfaces and raw cutter location (CL) data are generated in two-dimensional drawing space. The CL data are mapped to the tread surface to obtain five-axis CL data to machine the master model. The proposed method was tested by actual milling using the five-axis control machine. The results demonstrate that the method is useful for manufacturing a tire mold.

Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process (양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발)

  • Shin, H.;Park, Y.;Seo, Y.;Kim, B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

A Study on Plastic Injection Molding of NanosStructured Surface with a Local Mold Heating System (국부 가열 금형을 이용한 플라스틱 나노 구조표면 사출성형 연구)

  • La, Moon Woo;Park, Jang Min;Kim, Dong Earn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.8-13
    • /
    • 2015
  • In this study, we fabricated and characterized a nanostructured surface based on a plastic injection molding with a local mold heating (LMH) system. A metal mold core with a closed packed nano convex array (CVA) was achieved by integrated engineering procedures: (1) master template fabrication by anodic aluminum oxidation (AAO), (2) nickel electroforming (NE) process, and (3) post-processing by precision machining. The nickel mold core was utilized to replicate a surface with a closed packed nano concave-array (CCA) based on injection molding using cyclic olefin copolymer (COC) as a plastic material. In particular, an LMH system was introduced to enhance transcription quality of the nano structures by delaying solidification of molten polymer near the surface of the mold core.

Fabrication of Micro Component of Metallic Nano Powder Using Polymer Mold (폴리머 몰드를 이용한 금속 나노분말의 미세부품 제조)

  • Lee, Woo-Seok;Kim, Sang-Phil;Lee, Hye-Moon;Bae, Dong-Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.202-207
    • /
    • 2007
  • Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about $100^{\circ}C$. Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.