• Title/Summary/Keyword: massive hydriding

Search Result 4, Processing Time 0.024 seconds

A Study on the Hydriding Reaction of Pre-oxidized Zr Alloys (산화막을 입힌 지르코늄 합금의 수소화 반응에 관한 연구)

  • Kim, Sun-Ki;Bang, Je-Geon;Kim, Dae-Ho;Lim, Ik-Sung;Yang, Yong-Sik;Song, Kun-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • This paper presents some experimental results on incubation time for massive hydriding of Zr alloys with oxide thickness. Oxide effects experiments on massive hydriding reaction of commercial Zr alloy claddings and pre-oxidized Zr alloys with hydrogen gas were carried out in the temperature range from 300 to $400^{\circ}C$ with thermo-gravimetric apparatus. Experimental results for oxide effects on massive hydriding kinetics show that incubation time is not proportional to oxide thickness and that the massive hydriding kinetics of pre-filmed Zr alloys follows linear kinetic law and the hydriding rate are similar to that of oxide-free Zr alloys once massive hydriding is initiated. There was a difference in micro-structures between oxide during incubation time and oxide after incubation time. Physical defects such as micro-cracks and pores were observed in only oxide after incubation time. Therefore, the massive hydriding of Zr alloys seems to be ascribed to short circuit path, mechacical or physical defects, such as micro-cracks and pores in the oxide rather than hydrogen diffusion through the oxide resulting from the increase of oxygen vacancies in the hypostoichiometric oxide.

Effects of Surface Oxide Film on Massive Hydriding of Zr Alloy (지르코늄 합금의 대량수소화에 미치는 표면산화막의 영향)

  • Kim, Sun-Ki;Bang, Je-Geon;Kim, Dae-Ho;Lim, Ik-Sung;Yang, Yong-Sik;Song, Kun-Woo;Kim, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.597-603
    • /
    • 2008
  • Oxide effects experiments on massive hydriding reactions of Zr alloy with hydrogen gas were carried out at $400^{\circ}C$ under 1 atm in a $H_2$ environment with a thermo-gravimetric apparatus (TGA). Experimental results for oxide effects on massive hydriding kinetics show that incubation time is not proportional to oxide thickness. The results also show that the massive hydriding kinetics of pre-filmed Zr alloys follows linear kinetic law and that the hydriding rates are similar to that of oxide-free Zr alloys once massive hydriding is initiated. Unlikely microstructure of the oxide during incubation time, physical defects such as micro-cracks and pores were observed in the oxide after incubation time. Therefore, it seems that the massive hydriding of Zr alloys can be ascribed to short circuit paths and mechanical or physical defects, such as micro-cracks and pores in the oxide, rather than to hydrogen diffusion through the oxide resulting from the increase of oxygen vacancies in the hypo-stoichiometric oxide.

Internal Hydriding of Defected Zircaloy Cladding Fuel Rods : A Review (결함 핵연료 피폭관 내부에서의 수소 침투에 관한 개론적 고찰)

  • Kim, Yongsoo;Donald R. Olander;Wonmok Jae
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.570-587
    • /
    • 1993
  • Recently a number of severe fuel degradation events, seemingly due to internal secondary hydriding, have been reported. This paper reviews internal hydriding of defected zircaloy cladding. First, the history of zircaloy cladding development and the environment of the zircaloys in service in the nuclear reactor are introduced. Fundamental aspects of zircaloy hydriding, such as hydrogen permeability in zirconium oxide, terminal solubility and precipitation in zirconium and its alloys, and the deleterious effect of hydrides are reviewed. The mechanism of massive internal hydriding in defected zircaloy fuel rods is qualitatively described based on the observed phenomena. Significant factors affecting the hydriding process are discussed. A quantitative model for the massive hydriding as a part of an effort to mitigate fuel degradation is briefly mentioned and necessary information and recommended future work for improvement of the model are outlined.

  • PDF