• Title/Summary/Keyword: mass-acceleration

Search Result 553, Processing Time 0.027 seconds

Practical seismic assessment of unreinforced masonry historical buildings

  • Pardalopoulos, Stylianos I.;Pantazopoulou, Stavroula J.;Ignatakis, Christos E.
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.195-215
    • /
    • 2016
  • Rehabilitation of historical unreinforced masonry (URM) buildings is a priority in many parts of the world, since those buildings are a living part of history and a testament of human achievement of the era of their construction. Many of these buildings are still operational; comprising brittle materials with no reinforcements, with spatially distributed mass and stiffness, they are not encompassed by current seismic assessment procedures that have been developed for other structural types. To facilitate the difficult task of selecting a proper rehabilitation strategy - often restricted by international treaties for non-invasiveness and reversibility of the intervention - and given the practical requirements for the buildings' intended reuse, this paper presents a practical procedure for assessment of seismic demands of URM buildings - mainly historical constructions that lack a well-defined diaphragm action. A key ingredient of the method is approximation of the spatial shape of lateral translation, ${\Phi}$, that the building assumes when subjected to a uniform field of lateral acceleration. Using ${\Phi}$ as a 3-D shape function, the dynamic response of the system is evaluated, using the concepts of SDOF approximation of continuous systems. This enables determination of the envelope of the developed deformations and the tendency for deformation and damage localization throughout the examined building for a given design earthquake scenario. Deformation demands are specified in terms of relative drift ratios referring to the in-plane and the out-of-plane seismic response of the building's structural elements. Drift ratio demands are compared with drift capacities associated with predefined performance limits. The accuracy of the introduced procedure is evaluated through (a) comparison of the response profiles with those obtained from detailed time-history dynamic analysis using a suite of ten strong ground motion records, five of which with near-field characteristics, and (b) evaluation of the performance assessment results with observations reported in reconnaissance reports of the field performance of two neoclassical torsionally-sensitive historical buildings, located in Thessaloniki, Greece, which survived a major earthquake in the past.

Muscle-Induced Accelerations of Body Segments (근육의 힘이 신체 각 부분의 가속도에 미치는 영향)

  • Khang, Gon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1967-1974
    • /
    • 1991
  • When the functional electrical stimulation is employed to recover mobility to the plegic, it is very important to understand functions of the selected muscles. I have investigated how a muscle acts to accelerate the body segments, since the body segements are connected by joints so that contraction of a muscle not only rotates the segments to which it is attached but also causes other segments to rotate by creation a reaction force at every joint, which is called the inertial coupling. I found that a single-joint muscle always acts to accelerate the spanned joint in the same direction as the joint torque produced by the muscle. However, a double-joint muscle can act to accelerate the spanned joint in the opposite direction to the joint torque produced by the muscle depending on (1) the body position, (2) the body-segmental parameters, and (3) the type of the movement. Investigating the condition number of the inertia matrix of the body-segmental model gave us some insights into how controllable the body-segmental system is for different values of the factors mentioned above. The results suggested that the upright position is the most undesirable position to independently control the three segments(trunk, thigh and shank) and that the controllability is the most sensitive to variation of the shank length and the trunk mass, which implies that accuracy is required particularly when we estimate these two body-segmental parameters before the paralyzed muscles are innervated by using electrical stimulation.

Dynamic Load Factor for Floor Vibration due to Lively Concerts (공연하중에 의한 바닥진동 설계용 동하중계수)

  • Hong, Kap Pyo;Yoon, Kwang Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.721-728
    • /
    • 2002
  • Modern structrues are being built using high-strength and light-weight construction materials resulting in decreased structural mass and damping properties. Rhythmic activities such as jumping, dancing and clapping during lively concerts can produce excessive vibration of steel structures. In this study, dynamic load factors that occur during lively concerts were presented through vibration test and real-time monitoring of an existing concert hall. The vibration test included modal analysis and jumping test according to the forcing frequencies and the number of participants. Dynamic load foactors were acquired directly from peak acceleration responses of each harmonics. Comparing NBCC 1995, the 3rd harmonic must be included in the design of concert halls. Dynamic load factors must be increased as a result of the vibration test.

Piezoelectric Vibration Energy Harvester Using Indirect Impact (간접 충격을 이용한 압전 방식 진동형 에너지 하베스터)

  • Ju, Suna;Ji, Chang-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1499-1507
    • /
    • 2017
  • This paper presents an impact-based piezoelectric vibration energy harvester using a freely movable metal sphere and a piezoceramic fiber-based MFC (Macro Fiber Composite) as piezoelectric cantilever. The free motion of the metal sphere, which impacts both ends of the cavity in an aluminum housing, generates power across a cantilever-type MFC beam in response to low frequency vibration such as human-body-induced motion. Impacting force of the spherical proof mass is transformed into the vibration of the piezoelectric cantilever indirectly via the aluminum housing. A proof-of-concept energy harvesting device has been fabricated and tested. Effect of the indirect impact-based system has been tested and compared with the direct impact-based counterpart. Maximum peak-to-peak open circuit voltage of 39.8V and average power of $598.9{\mu}W$ have been obtained at 3g acceleration at 18Hz. Long-term reliability of the fabricated device has been verified by cyclic testing. For the improvement of output performance and reliability, various devices have been tested and compared. Using device fabricated with anodized aluminum housing, maximum peak-to-peak open-circuit voltage of 34.4V and average power of $372.8{\mu}W$ have been obtained at 3g excitation at 20Hz. In terms of reliability, housing with 0.5mm-thick steel plate and anodized aluminum gave improved results with reduced power reduction during initial phase of the cyclic testing.

High-resolution Capacitive Microaccelerometers using Branched finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계)

  • 한기호;조영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • This paper presents a navigation garde capacitive microaccelerometer, whose low-noise high-resolution detection capability is achieved by a new electrode design based on a high-amplitude anti-phase sense voltage. We reduce the mechanical noise of the microaccelerometer to the level of 5.5$\mu\textrm{g}$/(equation omitted) by increasing the proof-mass based on deep RIE process of an SOI wafer. We reduce the electrical noise as low as 0.6$\mu\textrm{g}$/(equation omitted) by using an anti-phase high-amplitude square-wave sense voltage of 19V. The nonlinearity problem caused by the high-amplitude sense voltage is solved by a new electrode design of branched finger type. Combined use of the branched finger electrode and high-amplitude sense voltage generates self force-balancing effects, resulting in an 140% increase of the bandwidth from 726㎐ to 1,734㎐. For a fixed sense voltage of 10V, the total noise is measured as 2.6$\mu\textrm{g}$/(equation omitted) at the air pressure of 3.9torr, which is the 51% of the total noise of 5.1$\mu\textrm{g}$/(equation omitted) at the atmospheric pressure. From the excitation test using 1g, 10㎐ sinusoidal acceleration, the signal-to-noise ratio of the fabricated microaccelerometer is measured as 105㏈, which is equivalent to the noise level of 5.7$\mu\textrm{g}$/(equation omitted). The sensitivity and linearity of the branched finger capacitive microaccelerometer are measured as 0.638V/g and 0.044%, respectively.

The study on the buckling instability of the expansion tube type crash energy absorber by using the FEM (FEM을 이용한 확관형 충돌에너지 흡수부재의 좌굴불안전성에 관한 연구)

  • Choi, Won-Mok;Jung, Hyun-Sung;Kwon, Tae-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.774-779
    • /
    • 2007
  • The crash energy absorbers used in the trains normally are classified into two types. The first is the structure type, which mainly used in not only the primary structure of train but also the crash energy absorbers at the critical accidents. The second is the module type, which just absorbs the crash energy independently and attached onto the structures of the trains. The expansion tube is widely used as the module type of the crash energy absorbers, especially in the trains that have a heavy mass. Since the crash energy is absorbed by means of expanding the tube in the radial direction, the features of the expansion tube have the uniform load during the compression. As the uniform load remains in sudden impact, the expansion tube is effective to decrease acceleration of passengers when the train accident occur. The buckling instability of the expansion tubes is affected by the boundary conditions, thickness and length of tube. In this study, the effects of the length and thickness of the expansion tubes under the arbitrary load on the buckling are studied using the ABAQUS/standard and ABAQUS/explicit, a commercial finite element analysis program, and then presents the guideline to design the expansion tubes. The analysis processes to compute the buckling load consist of the linear buckling analysis and the nonlinear post-buckling analysis. To analysis the nonlinear post-buckling analysis, the geometry imperfections are introduced by applying the linear buckling modes to nonlinear post-buckling analysis.

  • PDF

Natural Dyeing Fabrics with Serratuls coronate var. insularis Kitamura (산비장이(Serratuls coronate var. insularis Kitamura)를 이용한 직물의 천연염색)

  • HwangBo, Soo-Jeung;Jung, Yang-Sook;Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.48 no.2
    • /
    • pp.46-55
    • /
    • 2006
  • In this thesis, we took some stalks, flowers, and leaves of the Serratuls coronate var. insularis which are able to propagate as mass n our wild to extract the dyeing solution, and cotton and silk were dyed using them in many different conditions. Silk was dyed darker than cotton. We found there was not a big difference between silk and cotton in the given condition considering 'Y' values vs. dyeing temperature. There was a rapid decreasing of 'Y' values after one to two hours and almost all of dyeing was completed at these times. We found there was a dyeing acceleration at the higher dyeing density and the lower 'Y' value. If the density was low, dyeing attachment was reduced by dyeing ability via the density of liquid in both plants. Silk was affected higher by mordant dyes in both plants. Fe and Cu had an effect by mordant dyes slightly an Serratuls coronate var. insularis.

Development of Measurement System for the Safety Analysis of Moored Floating Matters (계류된 부유체의 안전성 평가를 위한 계측시스템 개발)

  • Seong, Yu-Chang;Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • Due to diversification of ships and limited space of pier, when ships come alongside the shallow water or narrow pier, sea area with small mooring facilities and floating matter is frequently applied. Through these, coming alongside the various space is capable and cost effectiveness is enhanced. However, when ships, applying small mooring facilities and floating matter, come alongside, there can be some impulse by waves between the floating things and ships which possibly leads to mass disaster. Therefore, there should be forecasts and analysis of the movement caused by waves. On this study, we develop measuring system for movement analysis of mooring and floating matters which provides base data with movement traits by measuring 3-D exercise information and acceleration at mokpo maritime university marina facility. Also, the composition and principles of the developed system is explained.

Natural Dyeing Fabrics with Hypericum ascyron L. (물레나물(Hypericum ascyron L.)을 이용한 직물의 천연염색)

  • HwangBo Soo-Jeung;Jung Yang-Sook;Bae Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.47 no.2
    • /
    • pp.78-87
    • /
    • 2005
  • In this thesis, we took some stalks, flowers, and leaves of the Hypericum ascyron L. which are able to propagate as mass in our wild to extract the dyeing solution, and cotton and silk were dyed using them in many different conditions. Silk was dyed darker than cotton with increasing the pH density. Silk was dyed darkest among Hypericum ascyron if pH was neutral. We found there was not a big difference between silk and cotton in the given condition considering 'Y' values vs. dyeing temperature. However cotton was dyed darker in hypericum ascyron. There was a rapid decreasing of 'Y' values after one to two hours and almost all of dyeing was completed at these times. We found there was a dyeing acceleration at the higher dyeing density and the lower 'Y' value. If the density was low, dyeing attachment was reduced by dyeing ability via the density of liquid in this plants. Silk was affected higher by mordant dyes in this plants. Fe and Cu had no effect on Hypericum ascyron.

EFFECTS OF SOURCE POSITION ON THE DH-TYPE II CME PROPERTIES

  • Shanmugarju, A.;Moon, Y.J.;Cho, K.S.;Umapathy, S.
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.3
    • /
    • pp.55-60
    • /
    • 2009
  • The properties of SOHO/LASCO CMEs are subjected to projection effects. Their dependence on the source position is important to be studied. Our main aim is to study the dependence of CME properties on helio-longitude and latitude using the CMEs associated with type IIs observed by Wind/WAVES spacecraft (Deca-hecta metric type IIs - DH type IIs). These CMEs were identified as a separate population of geo-effective CMEs. We considered the CMEs associated with the Wind/WAVE type IIs observed during the period January 1997 - December 2005. The source locations of these CMEs were identified using their associated GOES X-ray flares and listed online. Using their locations and the cataloged properties of CMEs, we carried out a study on the dependence of CME properties on source location. We studied the above for three groups of CMEs: (i) all CMEs, (ii) halo and non-halo CMEs, and (iii) limb and non-limb CMEs. Major results from this study can be summarized as follows. (i) There is a clear dependence of speed on both the longitude and latitude; while there is an increasing trend with respect to longitude, it is opposite in the case of latitude. Our investigations show that the longitudinal dependence is caused by the projection effect and the latitudinal effect by the solar cycle effect. (ii) In the case of width, the disc centered events are observed with more width than those occurred at higher longitudes, and this result seems to be the same for latitude. (iii) The dependency of speed is confirmed on the angular distance between the sun-center and source location determined using both the longitude and latitude. (iv) There is no dependency found in the case of acceleration. (v) Among all the three groups of CMEs, the speeds of halo CMEs show more dependency on longitude. The speed of non-halo and non-limb CMEs show more dependency on latitude. The above results may be taken into account in correcting the projection effects of geo-effective CMEs.