• 제목/요약/키워드: mass transfer effect

검색결과 683건 처리시간 0.025초

수평관군 흡수기의 전열촉진에 관한 실험적 연구 (Experimental investigation of heat transfer enhancement in horizontal bundle tubes on absorber)

  • 문춘근;설원실;김재돌;윤정인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.328-334
    • /
    • 2000
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different horizontal tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare tube, floral tube, hydrophilic tube. The additive concentration was about $0.05{\sim}5.5mass%$. The heat transfer coefficient was measured as a function of solution flow rate in the range of $0.01{\sim}0.034 kg/ms$. The experimental result were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube.

  • PDF

On the consideration of the masses of helical springs in damped combined systems consisting of two continua

  • Gurgoze, M.;Zeren, S.;Bicak, M.M.A.
    • Structural Engineering and Mechanics
    • /
    • 제28권2호
    • /
    • pp.167-188
    • /
    • 2008
  • This study is concerned with the establishment of the characteristic equation of a combined system consisting of a cantilever beam with a tip mass and an in-span visco-elastic helical spring-mass, considering the mass of the helical spring. After obtaining the "exact" characteristic equation of the combined system, by making use of a boundary value problem formulation, the characteristic equation is established via a transfer matrix method, as well. Further, the characteristic equation of a reduced system is obtained as a special case. Then, the characteristic equations are numerically solved for various combinations of the physical parameters. Further, comparison of the results with the massless spring case and the case in which the spring mass is partially considered, reveals the fact that neglecting or considering the mass of the spring partially can cause considerable errors for some combinations of the physical parameters of the system.

Potential functional roles of follistatin on bovine somatic cell nuclear transfer embryos

  • Lee, Kyung-Bon;Woo, Jae-Seok;Lee, Bo-Myoung;Park, Kang-Sun;Han, Kil-Woo;Kim, Min Kyu
    • 농업과학연구
    • /
    • 제40권4호
    • /
    • pp.353-358
    • /
    • 2013
  • To demonstrate that follistatin treatment enhances the efficiency of nuclear transfer (SCNT), cell allocation and preimplantational development were determined in bovine SCNT embryos in the present study. Treatment of activated SCNT embryos with 10 ng/ml follistatin significantly increased the proportion of blastocyst development compared to untreated SCNT embryos. In addition, an increase in trophectoderm (TE) cell numbers and relatively higher proportion of TE cells to total cells were observed, but the number of inner cell mass (ICM) cell and total cell numbers were not changed (P < 0.05). No significant effect of other doses of follistatin was observed for the above endpoints. However, treatment with 1 and 10 ng/ml follistatin reduced the proportion of nuclear transfer blastocysts with an ICM ratio of > 60% relative to untreated nuclear transfer blastocysts at Day 7. No significant effect of follistatin treatment on proportions of nuclear transfer blastocysts with ICM ratio of 20-40% or 40-60% was observed. Taken together, these results suggested that follistatin can be used to increase developmental competence of SCNT embryos in terms of cell allocation, particularly TE cells, during preimplantation stages, subsequently enhancing placentation and birth of live offspring.

Evaporation Heat Transfer and Pressure Drop Characteristics of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park, Jae-Hong;Kim, Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2284-2293
    • /
    • 2004
  • The evaporation heat transfer coefficient h$\_$r/ and frictional pressure drop Δp$\_$f/ of refrigerant R-134a flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the oblong shell and plate heat exchanger by four plates of geometry with a corrugated sinusoid shape of a 45 chevron angle. Upflow of refrigerant R-134a boils in two channels receiving heat from downflow of hot water in other channels. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality of R-134a were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the evaporation heat transfer coefficient h$\_$r/ and pressure drop Δp$\_$f/ increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the h$\_$r/ and Δp$\_$f/. But the effect of the average heat flux does not show significant effect on the h$\_$r/ and Δp$\_$f/. Finally, at a higher saturation temperature, both the h$\_$r/ and Δp$\_$f/ are found to be lower. The empirical correlations are also provided for the measured heat transfer coefficient and pressure drop in terms of the Nusselt number and friction factor.

Condensation Heat Transfer and Pressure Drop of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park Jae-Hong;Kim Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권3호
    • /
    • pp.158-167
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with a oblong shell and plate heat exchanger without oil in a refrigerant loop using R-134a. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient $h_r$ and frictional pressure drop ${\Delta}p_f$ of R-134a in a vertical oblong shell and plate heat exchanger. Four vertical counter flow channels were formed in the oblong shell and plate heat exchanger by four plates having a corrugated sinusoid shape of a $45^{\circ}$ chevron angle. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the condensation heat transfer coefficients and pressure drops increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the $h_r\;and\;{\Delta}p_f$. Also, a rise in the average heat flux causes an increase in the $h_r$. But the effect of the average heat flux does not show significant effect on the ${\Delta}p_f$. On the other hand, at a higher saturation temperature, both the $h_r\;and\;{\Delta}p_f$. found to be lower. Based on the present data, the empirical correlations are provided in terms of the Nusselt number and friction factor.

수화발열량차 및 열전달계수 변화를 고려한 매스콘크리트의 수화열 해석 (Hydration Heat Analysis of Mass Concrete considering Heat Transfer Coefficient and Hydration Heat Difference)

  • 한승백;이성수;신효범;김호수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.249-252
    • /
    • 2008
  • 최근 대규모화된 건축 구조물에서 매스콘크리트 형식의 구조체가 많이 적용됨에 따라 수화열에 의한 온도균열의 발생이 가장 큰 문제점으로 대두되고 있다. 매스콘크리트의 온도균열은 타설 후 시멘트의 수화열에 의한 온도상승 및 강하에 따라 생기는 체적변화가 내부 또는 외부적으로 구속을 받아 발생하는 것으로, 이를 제어하기 위한 수화열 저감대책이 필요하다. 따라서 본 연구에서는 저발열배합 및 수화발열량차를 이용하여 분할타설된 매스콘크리트를 대상으로 양생조건에 따른 열전달계수 변화를 고려한 수화열 해석을 수행한다. 이를 위한 해석모델은 분할타설을 고려하여 상부층은 일반콘크리트를 타설하고 하부층은 저발열배합 콘크리트를 타설한다. 분할타설된 매스콘크리트는 외기노출 부분과 거푸집 부분, 양생조건부분이 다르기 때문에 그에 따른 대류경계조건을 설정한다. 이에 따라 저발열배합 및 분할타설, 열전달계수 변화 등을 고려한 수화열 해석결과를 통해 온도분포 및 응력분포를 확인하고, 온도균열저감효과를 분석한다.

  • PDF

R-410A 비등열전달에 미치는 미세관경의 영향 (Effect on Flow Boiling Heat Transfer of Minichannel Diameter for R-410A)

  • 최광일;;오종택;;박창용
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.663-670
    • /
    • 2009
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$ a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The test section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficients are compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficients correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.297-305
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter. a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$. saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greatly effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality. heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In making a comparison between test results and existing correlations. the present experimental data are the best fit for the correlation of Jung et al. But it was failed to predict the evaporation heat transfer coefficient of $CO_2$ using by the existing correlation. Therefore. it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Son Chang-Hyo;Kim Dae-Hui;Choi Sun-Muk;Kim Young-Ryul;Oh Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.167-174
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500kg/m^2s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greater effect on nucleate boiling than convective boiling. The evaporation heat transfer coefficient of $CO_2$ is highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But the existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

동적 평형위치에 있는 다물체계의 모드특성에 미치는 공차의 영향 분석을 위한 해석적 방법 (Analytical Method to Analyze the Effect of Tolerance on the Modal Characteristic of Multi-body Systems in Dynamic Equilibrium)

  • 김범석;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.579-586
    • /
    • 2007
  • Analytical method to analyze the effect of tolerance on the modal characteristic of multi-body systems in dynamic equilibrium position is suggested in this paper. Monte-Carlo method is conventionally employed to perform the tolerance analysis. However, Monte-Carlo method spends too much time for analysis and has a greater or less accuracy depending on sample condition. To resolve these problems, an analytical method is suggested in this paper. Sensitivity equations for damped natural frequencies and the transfer function are derived at the dynamic equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivities of damped natural frequencies and the transfer function can be calculated.