• Title/Summary/Keyword: mass sensing

Search Result 208, Processing Time 0.026 seconds

The Improvement of the Correlation Method for Shack-Hartmann Wavefront Sensors using Multi-Resolution Method (다중 해상도 중심점 탐색법을 이용한 샥-하트만 센서용 상관관계법의 속도 개선)

  • Yoo, Jae-Eun;Youn, Sung-Kie
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Shack-Hartmann sensors are widely employed as a wavefront measuring device in various applications. Adaptive optics is one of the major applications. Since an adaptive optics system should be operated in real-time, high-speed wavefront sensing is essential. In high-speed operation, integration time of an image detector is very short. In this case, noises such as readout noise and photon noise greatly influence the accuracy of wavefront sensing. Therefore a fast and noise-insensitive centroid finding algorithm is required for the real-time wavefront sensing. In this paper, the multi-resolution correlation method is proposed. By employing multi-resolution images, this method greatly reduces the computation time when compared to the fast Fourier transform (FFT) correlation method. The verification is performed through the computational simulation. In this paper, the center of mass method, correlation method and multi-resolution correlation method are employed to compare the measurement accuracy of the centroid finding algorithms. The accuracy of a Shack-Hartmann wavefront sensor using the proposed algorithm is proved to be comparable to that of the conventional correlation method.

A Study on n FBG Weight Sensor (광파이버 브래그 격자형 무게 센서에 관한 연구)

  • Lee, Jong-Jong;Jung, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.721-725
    • /
    • 2007
  • A fiber optic based weight sensor has fabricated using a fiber Bragg grating with a weight sensitive. The sensing concept exploits the inherent characteristics of the FBG and is based on the strain effect induced in the fiber Bragg grating through. A direct indication of the weight level is given by the shift of the Bragg wavelength caused by the expansion of the sensing material. A FBG behaves like a spectral filter which has inherent characteristics that render it very sensitive to strain and temperature. The sensing principle is also based on the strain effect induced in the FBG through the caused by the weight. The experimental setup used for the initial investigation to characterize the mass response of the sensor. The transmitted signal from the sensor was monitored using an optical spectrum analyzer with a resolution bandwidth of 0.4nm. In this paper, we presented the spectral characterization and shaping of FBG by scanning a mass element that affects a small grating fraction at a time, without permanent effects on the optical fiber when the various wavelength and strain is removed. That is, destruction when the optical fiber for weight is physically damaged.

  • PDF

Fabrication and Characterization of Electrostatically Actuated Microcantilever Mass Sensors (정전기력으로 구동되는 마이크로 캔틸레버 질량 센서의 제작과 특성)

  • Lee, Jung-Chul;Choi, Bum-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Microcantilevers have been actively used in probe-based microscopy and gravimetric sensing for biological or chemical analytes. To integrate actuation or detection schemes in the structure, typical fabrication processes include several photolithographic steps along with conventional MEMS fabrication. In this paper, a simple and straightforward way to fabricate and operate silicon microcantilever mass sensors is presented. The fabricated microcantilever sensors which can be electrostatically actuated require only two photolithographic steps. Resonant characteristics of fabricated microcantilevers are measured with a custom optical-lever and results show size-dependent quality factors. Using a $40\;{\mu}m$ long, $7\;{\mu}m$ wide, and $3\;{\mu}m$ thick cantilever, we achieved subfemtogram mass resolution in a 1 Hz bandwidth.

Detection of the mechanical resonance of a micromechanical cantilever using dynamic flexural measurement technique and its mass sensing application

  • Kim, Hak-Seong;Yun, Ho-Yeol;Jeong, Un-Seok;Yu, Na-Ri;Park, Jeong-Ho;Lee, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.447-447
    • /
    • 2011
  • We studied to detect the mass variation using micro mechanical resonator. For measuring the resonance frequency of the micro mechanical system, optical method using laser interference is selected. A simple resonator is prepared by attaching an AFM cantilever on the piezo stack. The piezo stack makes a the cantilever vibrated with its resonance frequency. To change the mass of the resonator, gold was evaporated on the cantilever. We measured how much resonance frequency was changed according to the amount of gold attached on cantilever. This resonator is able to perform the role of a mass sensor and has a resolution of the order of micrograms. The fabrication of the resonator and measurement setup for detecting the mechanical resonance will be introduced in this presentation.

  • PDF

Sensing Properties of ZrO2-added SnO2 for Nerve and Blister Agent (ZrO2 첨가된 SnO2를 이용한 신경 및 수포작용제 검지에 대한 연구)

  • Yun, Ky-Youl;Cha, Gun-Young;Choi, Nak-Jin;Lee, Duk-Dong;Kim, Jae-Chang;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.323-328
    • /
    • 2004
  • N-type semi-conducting oxides such as $SnO_{2}$, ZnO, and $ZrO_{2}$ have been known for the detecting materials of inflammable or toxic gases. Of those materials, $SnO_{2}$-based sensors are well known as high sensitive materials to detect toxic gases. And the sensitivity is improved if catalysts are added. Detecting toxic gases, especially DMMP (di-methyl-methyl-phosphonate) and DPGME (Dipropylene glycol methyl ether), was performed by a mixture of Tin oxide ($SnO_{2}$) and Zirconia ($ZrO_{2}$). The films consist of each three different mass% of Zr (from 1 mass% to 5 mass%), and they were tested by XRD, SEM, TEM, BET. Nano-structure, pore and particle size was controlled to verify the sensor's sensing mechanism. The sensors was evaluated at five different degrees (from $200^{\circ}C$ to $400^{\circ}C$) and three different concentrations (from 500 ppb to 1500 ppb). The sensors had good sensitivity of both simulants, and high selectivity of DMMP.

Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model (인공위성 자료와 궤적분석 모델을 이용한 화산재 모니터링)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • Satellite remote sensing data have been valuable tool for volcanic ash monitoring. In this study, we present the results of application of satellite remote sensing data for monitoring of volcanic ash for three major volcanic eruption cases (2008 Chait$\acute{e}$n, 2010 Eyjafjallaj$\ddot{o}$kull, and 2011 Shinmoedake volcanoes). Volcanic ash detection products based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) observation data using infrared brightness temperature difference technique were compared to the forward air mass trajectory analysis by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. There was good correlation between MODIS volcanic ash image and trajectory lines after the volcanic eruptions, which support the feasibility of using the integration of satellite observed and model derived data for volcanic ash forecasting.

FORMOSAT-2'S EFFECTIVENESS TO TAIWAN'S PUBLIC EDUCATION

  • Chern, Jeng-Shing;Wu, Lance;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.959-962
    • /
    • 2006
  • Public education is undoubtedly a very important aspect for a country to develop space program. People have the rights to understand how the tax they paid is being used. This paper addresses the effectiveness of FORMOSAT-2 on public education in Taiwan. As the first remote sensing satellite of the National Space Organization (NSPO) of Taiwan, FORMOSAT-2 is a small satellite of 746 kg mass for two remote sensing missions: Earth and upward lightning observations. The mission orbit is sun-synchronous of 888 km altitude for exactly 14 revolutions per day. For earth observation, the payload is an advanced high resolution remote sensing instrument (RSI) with ground sampling distance (GSD) 2 m in panchromatic (PAN) band and 8 m in four multi-spectral (MS) bands. For upward lightning observation, the payload is an imager of sprites and upper atmospheric lightning (ISUAL). After more than two years of Earth observation started in June 2004, the effectiveness of FORMOSAT-2 images on public education in Taiwan is very promised. Five domestic universities and one private company in Taiwan have signed contracts respectively with NSPO to take the roles of satellite image investigator and distributor. A private company has signed contract with NSPO to generate and provide URMAP (= your map) in its website for general public applications by using FORMOSAT-2 images. The Newtonkids Book Company used FORMOSAT-2 images to publish a kind of calendar for children education purpose. Besides, a science team in National Cheng Kung University (NCKU) is doing the research work on the 3820 (up to 30 June 2006) transient luminous events (TLEs) observed by FORMOSAT-2.

  • PDF

Ring-Shaped Inductive Sensor Design and Application to Pressure Sensing (환형 인덕티브 센서의 설계 및 압력센서로의 적용)

  • Noh, Myounggyu;Kim, Sunyoung;Baek, Seongki;Park, Young-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.995-999
    • /
    • 2015
  • Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor.

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig;Baek Sangho;Lee Hyongki;Sohn Hong-Gyoo;Han Uk;Shum C. K.
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.

Synergistic effects of CNT and CB inclusion on the piezoresistive sensing behaviors of cementitious composites blended with fly ash

  • Jang, Daeik;Yoon, H.N.;Yang, Beomjoo;Seo, Joonho;Farooq, Shah Z.;Lee, H.K.
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.351-359
    • /
    • 2022
  • The present study investigated the synergistic effects of carbon nanotube (CNT) and carbon black (CB) inclusions on the piezoresistive sensing behaviors of cementitious composites. Four different CNT and CB combinations were considered to form different conductive networks in the binder material composed of Portland cement and fly ash. The cement was substituted with fly ash at levels of 0 or 50% by the mass of binder. The specimens were cured up to 100 days to observe the variations of the electrical characteristics with hydration progress, and the piezoresistive sensing behaviors of the specimens were measured under cyclic loading tests. The fabricated specimens were additionally evaluated with flowability, resistivity and cyclic loading tests, and morphological analysis. The scanning electron microscopy and energy disperse X-ray spectroscopy test results indicated that CNT and CB inclusion induced synergistic formations of electrically conductive networks, which led to an improvement of piezoresistive sensing behaviors. Moreover, the incorporation of fly ash having Fe3+ components decreased the electrical resistivity, improving both the linearity of fractional changes in the electrical resistivity and reproducibility expressed as R2 under cyclic loading conditions.