• 제목/요약/키워드: mass property

검색결과 529건 처리시간 0.028초

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

Purity assignment of 17β-estradiol by mass balance method

  • Lee, Hwa-Shim;Oh, Kwang-Hoon
    • 분석과학
    • /
    • 제30권5호
    • /
    • pp.226-233
    • /
    • 2017
  • In general, quantitative chemical analysis in various areas including food, the environment, in vitro diagnostics, etc., requires traceability in order to increase the reliability of the measurements. Measurement traceability is a property of an unbroken chain of comparisons relating an instrument's measurements to SI units. Purity analysis is the first process for establishing traceability to SI units in chemical measurements. The purpose of this study is to develop and validate a method of purity assignment for establishing the traceability of $17{\beta}$-estradiol measurements in an in vitro diagnostics field. The establishment of this method is very important as it can be applied to the development of CRM and to the analysis of the purity of other hormones. The method of assignment of the purity of $17{\beta}$-estradiol was developed using the mass balance method and was validated through participation in an International comparison. In the mass balance method, impurities are categorized into four classes as follows: total related structure impurities, water, residual organic solvents, and nonvolatiles/inorganics. In this study, total related structure impurities were characterized by a gas chromatography-flame ionization detector (GC-FID) and a high-performance liquid chromatography-ultraviolet (HPLC-UV) detector, water content was determined by a Karl-Fisher coulometer, and total residual solvents and nonvolatiles/inorganics were checked simultaneously by thermogravimetric analysis (TGA). The purity of the $17{\beta}$-estradiol was 985.6 mg/g and the expanded uncertainty was 2.1 mg/g at 95% confidence. The developed method can be applied to the development of certified reference materials, which play a critical role in traceability.

Distribution and Vertical Structures of Water Masses around the Antarctic Continental Margin

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • 제27권3호
    • /
    • pp.277-288
    • /
    • 2005
  • Spatial distribution and vertical structures of water masses around the Antarctic continental margin are described using synthesized hydrographic data. Antarctic Surface Water (AASW) over the shelf regime is distinguished from underlying other water masses by the cut-off salinity, varying from approximately 34.35 to 34.45 around Antarctica. Shelf water, characterized by salinity greater than the cut-off salinity and potential temperature less than $-17^{\circ}C$, is observed on the Ross Sea, off George V Land, off Wilkes Land, the Amery Basin, and the Weddell Sea, but in some shelves AASW occupies the entire shelf. Lower Circumpolar Deep Water is present everywhere around the Antarctic oceanic regime and in some places it mixes with Shelf Water, producing Antarctic Slope Front Water (ASFW). ASFW, characterized by potential temperature less than about $0^{\circ}C$ and greater than $-17^{\circ}C$, and salinity greater than the cut-off salinity, is found everywhere around Antarctica except in the Bellingshausen-Amundsen sector. The presence of different water masses over the Antarctic shelves and shelf edges produces mainly three types of water mass stratifications: no significant meridional property gradient in the Bellingshausen and Amundsen Seas, single property gradient where ASFW presents, and a V-shaped front where Shelf Water exists.

전산유체역학을 활용한 원전용 밸브의 유량계수 산출에 대한 연구 (STUDY ON CALCULATION OF FLOW COEFFICIENT BY CFD FOR VALVE IN NUCLEAR POWER PLANT)

  • 김재형;이정희
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.54-60
    • /
    • 2016
  • The valve used in nuclear power plant must be qualified but the limitation of the test facility leads to use the numerical analysis. The flow coefficient is calculated with the consideration of the pressure, velocity and geometry. And the flow coefficient is the important physical property which is prepared using experiment or analysis by valve manufacturer. In this study, the analysis model was made according to ISA 75.02.01 and the mass flow rate and pressure drop ratio was calculated. The model of the expansion factor was applied to the simulation result and the pressure drop ratio at the start of the choked flow in the valve was found. With the simulation result, the consideration was performed that the expansion factor is the important physical property to the system engineer in addition to the flow coefficient.

인공위성발사체 상단부 진동환경시험을 위한 치구설계 (Vibration Fixture design for small satellite launch vehicle environment test)

  • 정호경;서상현;박순홍;장영순;이영무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.258-262
    • /
    • 2007
  • Satellite launch vehicle is exposed to some dynamic environment during its flight. Particularly, the safety of launch vehicle structure is surely verified under vibration environment in low frequency range. Sine sweep test is generally performed to describe this low frequency vibration environment. Dynamic property of vibration fixture is considered to get the correct property of target object. This vibration fixture should really be an extension of the armature in the form of a very rigid structure that can transfer the required force at the required frequency. An optimum fixture would have its lower natural frequency about 50% higher than the highest required forcing frequency in order to avoid fixture resonances during the test. In this study, the vibration mode analysis considering the mass of target object to design the vibration fixture. And the modal test of vibration fixture is performed to conform the design.

  • PDF

A Meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds

  • Wu, C.T.;Koishi, M.
    • Interaction and multiscale mechanics
    • /
    • 제2권2호
    • /
    • pp.129-151
    • /
    • 2009
  • This paper presents a meshfree procedure using a convex generalized meshfree (GMF) approximation for the large deformation analysis of particle-reinforced rubber compounds on microscopic level. The convex GMF approximation possesses the weak-Kronecker-delta property that guarantees the continuity of displacement across the material interface in the rubber compounds. The convex approximation also ensures the positive mass in the discrete system and is less sensitive to the meshfree nodal support size and integration order effects. In this study, the convex approximation is generated in the GMF method by choosing the positive and monotonic increasing basis function. In order to impose the periodic boundary condition in the unit cell method for the microscopic analysis, a singular kernel is introduced on the periodic boundary nodes in the construction of GMF approximation. The periodic boundary condition is solved by the transformation method in both explicit and implicit analyses. To simulate the interface de-bonding phenomena in the rubber compound, the cohesive interface element method is employed in corporation with meshfree method in this study. Several numerical examples are presented to demonstrate the effectiveness of the proposed numerical procedure in the large deformation analysis.

밀장전 발파압력의 확률론적 예측 (Probabilistic Estimation of Fully Coupled Blasting Pressure)

  • 박봉기;이인모;김동현;이상돈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.391-398
    • /
    • 2004
  • The propagation mechanism of a detonation pressure with fully coupled charge is clarified and the blasting pressure propagated in rock mass is derived from the application of shock wave theory. Probabilistic distribution is obtained by using explosion tests on emulsion and rock property tests on granite in Seoul and then the probabilistic distribution of the blasting pressure is derived from their properties. The probabilistic distributions of explosive properties and rock properties show a normal distribution so that the blasting pressure propagated in rock can be also regarded as a normal distribution. Parametric analysis was performed to pinpoint the most influential parameter that affects the blasting pressure and it was found that the detonation velocity is the most sensitive parameter. Moreover, uncertainty analysis was performed to figure out the effect of each parameter uncertainty on the uncertainty of blasting pressure. Its result showed that uncertainty of natural rock properties constitutes the main portion of blasting pressure uncertainty rather than that of explosive properties.

  • PDF

이온주입에 의한 PC(Polycarbonate) 필름의 자외선 영역 광 투과 특성 (Optical Transmittance Property of Polycarbonate film at UV Range by ion Implantation)

  • 이재형;이찬영;김재근
    • 한국전기전자재료학회논문지
    • /
    • 제16권12호
    • /
    • pp.1091-1096
    • /
    • 2003
  • Ion implantation in polymeric materials can induce dramatic chemical modifications, such as bond breaking, cross linking, formation of new chemical products, which have strong influences on the macroscopic properties of the materials. In this study ion implantation was performed onto polymer, PC(polycarbonate), in order to investigate change of the optical transmittance property focusing ultraviolet ray range(200-400nm). PC was irradiated with N, Ar, Kr, Xe ions at the ion energy of 50keV and the dose range of 5 ${\times}$ 10$\^$15/, 1 ${\times}$ 10$\^$16/, 7${\times}$10$\^$16/ ions/$\textrm{cm}^2$. FT-IR, XPS, UV/Vis transmittance spectroscopy measurement technologies were employed to obtain chemical. structural properties and optical transmittance of irradiated polymer. The original PC(unimplanted) is quite transparent that it has more than 88% transmittance in the range UV-A(320∼400nm), but after ion implantation, surface colors were changed to the dark brown and the transmittance of UV ray decreased for all implantation condition, and the absorption edge was shift to visible range with increasing mass of implanted ion species and dose.

염료감응형 태양전지의 상대전극 재료로서 탄소나노튜브의 전기화학적 특성 (Electrochemical Properties of Carbon Nano-tube as the Counter Electrode of Dye-sensitized solar cell)

  • 김현주;이동윤;구보근;이원재;송재성;이대열
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1090-1094
    • /
    • 2004
  • Studies on porous oxide electrode, dye and electrolyte for dye-sensitized solar cells have been intensively carried out until now. However, counter electrode have not been much studied so far. Accordingly, it is needed to investigate new counter electrode materials with superior catalyst property and to substitute for Pt electrode. In this case, carbon nano-tubes (CNTs) are one of alternatives for counter electrodes as following merits: low resistivity, excellent electron emission property, large surface area and low cost due to development of mass production technique. Such advantages gave us to select multiwalled CNTs (MWCNT) as counter electrode for dye-sensitized solar cell. Also, cyclic voltammetry and impedance spectroscopy were used to investigate electrochemical properties of both CNT electrode and Pt electrode. It was found that sheet resistance of CNT electrode was similar to that of Pt electrode, also, electrochemical properties of CNT electrode was superior to that of Pt electrode on the basis on the measurement of CV and impedance spectrum. It was found that CNT is likely to be a very promising electrode material for dye solar cells.