• 제목/요약/키워드: mass eccentricity

검색결과 103건 처리시간 0.023초

Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings

  • Stathi, Chrysanthi G.;Bakas, Nikolaos P.;Lagaros, Nikos D.;Papadrakakis, Manolis
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.145-171
    • /
    • 2015
  • Due to earthquakes, many structures suffered extensive damages that were attributed to the torsional effect caused by mass, stiffness or strength eccentricity. Due to this type of asymmetry torsional moments are generated that are imposed by means of additional shear forces developed at the vertical resisting structural elements of the buildings. Although the torsional effect on the response of reinforced concrete buildings was the subject of extensive research over the last decades, a quantitative index measuring the amplification of the shear forces developed at the vertical resisting elements due to lateral-torsional coupling valid for both elastic and elastoplastic response states is still missing. In this study a reliable index capable of assessing the torsional effect is proposed. The performance of the proposed index is evaluated and its correlation with structural response quantities like displacements, interstorey drift, base torque, shear forces and upper diaphragm's rotation is presented. Torsionally stiff, mass eccentric single-story and multistory structures, subjected to bidirectional excitation, are considered and nonlinear dynamic analyses are performed using natural records selected for three hazard levels. It was found that the proposed index provides reliable prediction of the magnitude of torsional effect for all test examples considered.

Properties of the mini-halos in dwarf ellipticals obtained from cosmological hydrodynamic simulations

  • 신지혜;김주한;김성수;윤석진;박창범
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.77.1-77.1
    • /
    • 2012
  • We have performed cosmological hydrodynamic simulations that include the effects of radiative heating/cooling, star formation, feedback by supernova explosions, and metallicity evolution. Our simulations cover a cubic box of a side length 4 Mpc/h with 130 million particles. The mass of each particle is $3.4{\times}10^4M_{\odot}$, thus sub-galactic mini-halos can be resolved with more than hundred particles. Our simulation follows the whole formation process of the mini-halos (M< $10^7M_{\odot}$) around dwarf galaxies. We discuss various properties of the mini halos such as mass function, specific frequency, baryon-to-dark matter ratio, metallicity, spatial distribution, and orbit eccentricity distribution as functions of redshift and host galaxy mass. We also discuss how the formation and evolution of the mini halos are affected by the epoch of the reionization.

  • PDF

On the Period Change of the Contact Binary GW Cephei

  • Kim, Chun-Hwey;Song, Mi-Hwa;Yoon, Joh-Na;Jeong, Jang-Hae;Jeoung, Taek-Soo;Kim, Young-Jae;Kim, Jung-Yeb
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권2호
    • /
    • pp.89-96
    • /
    • 2010
  • BVR CCD observations of GW Cep were made on 15 nights in November through December 2008 with a 1-m reflector at the Jincheon station of the Chungbuk National University Observatory. Nineteen new times of minimum lights for GW Cep were determined and added to a collection of all other times of minima available to us. These data were then intensively analyzed, by reference to an O-C diagram, to deduce the general form of period variation for GW Cep. It was found that the O-C diagram could be interpreted as presenting two different forms of period change: an exclusively quasi-sinusoidal change with a period of 32.6 years and an eccentricity of 0.10; and a quasi-sinusoidal change with a period of 46.2 years and an eccentricity of 0.36 superposed on an upward parabola. Although a final conclusion is somewhat premature at present, the latter seems more plausible because late-type contact binaries allow an inter-exchange of both energy and mass between the component stars. The quasi-sinusoidal characteristics were interpreted in terms of a light-time effect due to an unseen tertiary component. The minimum masses of the tertiary component for both cases were calculated to be nearly the same as the $0.23-0.26M\;{\odot}$-ranges which is hardly detectable in a light curve synthesis. The upward parabolic O-C diagram corresponding to a secular period increase of about $4.12{\times}10^{-8}\;d/yr$ was interpreted as mass being transferred from the lesser to more massive component. The transfer rate for a conservative case was calculated to be about $2.66\;{\times}\;10^{-8}\;M_{\odot}/yr$ which is compatible with other W UMa-type contact binaries.

유공직사각형평판(有孔直四角形平板)의 접수진동(接水振動) (Transverse Vibration of Rectangular Plates Having an Inner Cutout in Water)

  • 이호섭;김극천
    • 대한조선학회지
    • /
    • 제21권1호
    • /
    • pp.21-34
    • /
    • 1984
  • This paper is concerned with the experimental investigation of transverse vibration characteristics in water of rectangular plates having an inner free cutout. Systematic experiments are carried out to investigate effects of the surrounding water on the added mass and the natural frequency of the plates due to the changes of the aspect ratio, hole size and eccentricity. The main subject is the clamped rectangular plate with a circular hole. For the purpose of comparative evaluations, some other common-type boundary conditions and hole shapes such as ellipses and rectangles are also investigated. Some of the results obtain are as follows; 1) For each given aspect ratio of the plate, there is a hole area ratio which gives a minimum value of the nondimensional frequency parameter for each mode. The hole area ratio increases as the order number of the mode increases. 2) The nondimensinal mass-increment parameter decreases as the aspect ration or the order number of the mode increases. For each given aspect ratio, the parameter the fundamental mode decreases monotonically as the hole area ratio increase. In cases of the second and higher order modes, however, each mode has a hole area ratio which gives a maximum value of the parameter for each aspect ratio more then 2/3. 3) Comparing elliptic holes with rectangular ones with same hole area ratio, nondimensional frequency parameters are almost same for each given ratio of the shorter axises to the longer one. 4) The influences of difference in boundary condion on nondimensional frequency parameters in water are similar to those in air.

  • PDF

A planetary companion around K-giant ${\varepsilon}$ Corona Borealis

  • 이병철;한인우;박명구;;김강민
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.77.1-77.1
    • /
    • 2012
  • We present high-resolution radial velocity measurements of K2 giant ${\varepsilon}$ CrB from February 2005 to January 2012 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph at Bohyunsan Optical Astronomy Observatory. We find that the RV measurements for ${\varepsilon}$ CrB exhibit a periodic variation of 418 days with a semi-amplitude of 129 m/s. There is no correlation with RV measurements and inhomogeneous surface features by examining chromospheric activity indicator (Ca II H region), the Hipparcos photometry, and bisector velocity span. Thus, Keplerian motion is the most likely explanation, which suggests that the RV variations arise from an orbital motion. Assuming a possible stellar mass of 1.7 $M_{\odot}$, for ${\varepsilon}$ CrB, we obtain a minimum mass for the planetary companion of 6.7 $M_{Jup}$ with an orbital semi-major axis of 1.3 AU, and an eccentricity of 0.11. We support that more massive stars harbor more massive planetary companions in giant hosting planetary companions (Dollinger et al. 2009), as well as, we discuss the frequency of detected planetary companions with the metallicity distribution in giant (Pasquini et al. 2007; Quirrenbach et al. 2011).

  • PDF

Search for extrasolar planets around K-giants: $\alpha$ Arietis - planet or surface features?

  • Lee, Byeong-Cheol;Mkrtichian, David E.;Han, In-Woo;Kim, Kang-Min;Park, Myeong-Gu
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.78.2-78.2
    • /
    • 2010
  • We report the detection of a low-amplitude 380.8-day radial velocity (RV) variations in oscillating K2 III star ${\alpha}$ Ari (HD 12929). We do not found the correlation between RV variations and equivalent widths of chromospheric activity indicators ($H{\alpha}$ and CaII 8662 ${\AA}line$). The bisector analysis shows that bisector velocity span (BVS) and RV variations are not strongly correlated with each other. These result suggest that the RV variations could have been produced either by planetary companion or by the surface spots. If this RV variation is indeed caused by a planetary companion, an orbital solution with a period of P = 381 days, a semi-amplitude of K = 41 m/s, and an eccentricity of e = 0.25 fits the data best. Assuming a possible stellar mass of $M_{\bigstar} = 1.4-5.6 M\odot$, we estimate the minimum mass for the companion of m sini = 1.8-4.5 $M_{Jup}$ with an orbital semi-major axis of 1.2-1.9 AU. If confirmed, our finding gives a support to search for exoplanets around giant stars with multi-periodic oscillations.

  • PDF

ANALYSIS OF LONG PERIOD RADIAL VELOCITY VARIATIONS FOR HD 18438 AND HD 158996

  • Bang, Tae-Yang;Lee, Byeong-Cheol;Jeong, Gwang-hui;Han, Inwoo;Park, Myeong-Gu
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.42.4-43
    • /
    • 2017
  • We investigate the long-period radial velocity (RV) variations for M giant HD 18438 and K giant HD 158996 using the high-resolution Bohyunsan Observatory Echelle Spectrograph at the 1.8m telescope of Bohyunsan Optical Astronomy Observatory in Korea. These two target stars are important because HD 18438 is the largest star and HD 158996 is the brightest star for exoplantary system candidate so we can understarnd how evolved stars affect planets by researching these stars. We calculated precise RV measurements of 38 and 24 spectra from November 2010 to January 2017 and June 2010 to January 2017, respectively. We dreived the RV variation period for 719.0 days of HD 18438, 775.6 days for HD 158996. We conclude that the RV variation of HD 158996 is caused by planetary companion which has the mass of 14.7 MJup, semi-major axis of 2.2 AU, and eccentricity of 0.27 assuming the stellar mass of $2.34M{\odot}$. On the other hand, the origin of RV variation of HD 18438 with period of 719.0 days is still uncertain. It might be caused by stellar chromospheric activity or planetary companion, so more observations and tests are required.

  • PDF

Detection of exoplanet around evolved K giant HD 66141

  • 이병철;한인우;박명구;;김강민
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.140.2-140.2
    • /
    • 2011
  • We present high-resolution radial velocity (RV) measurements of K2 giant HD 66141 from December 2003 to January 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). We find that the RV measurements for HD 66141 exhibit a periodic variation of 480 days with a semi-amplitude of 146 m/s. We do not find the correlation between RV variations and a chromospheric activity indicator (H line). The Hipparcos photometry as well as bisector velocity span (BVS) also do not show any obvious correlations with RV variations. Thus, Keplerian motion is the most likely explanation, which suggests that the RV variations arise from an orbital motion. Assuming a possible stellar mass of 1.5 $M{\odot}$, for HD 66141, we obtain a minimum mass for the planetary companion of 7.4 MJup with an orbital semi-major axis of 1.4 AU, and an eccentricity of 0.07. We support that planet occurrence rate around evolved stars is more than 10 % (Dollinger et al. 2009) as well as more massive stars do form significantly more massive planetary companions (Johnson et al. 2007; Lovis & Mayor 2007; Dollinger et al. 2009).

  • PDF

PLANETARY COMPANION IN K GIANT σ PERSEI

  • Lee, Byeong-Cheol;Han, Inwoo;Park, Myeong-Gu;Mkrtichian, David E.;Jeong, Gwanghui;Kim, Kang-Min;Valyavin, Gennady
    • 천문학회지
    • /
    • 제47권2호
    • /
    • pp.69-76
    • /
    • 2014
  • We report the detection of an exoplanet candidate in orbit around ${\sigma}$ Persei from a radial velocity (RV) survey. The system exhibits periodic RV variations of $579.8{\pm}2.4$ days. The purpose of the survey is to search for low-amplitude and long-period RV variations in giants and examine the origin of the variations using the fiber-fed Bohyunsan Observatory Echelle Spectrograph installed at the 1.8-m telescope of Bohyunsan Optical Astronomy Observatory in Korea. We present high-accuracy RV measurements of ${\sigma}$ Per made from December 2003 to January 2014. We argue that the RV variations are not related to the surface inhomogeneities but instead a Keplerian motion of the planetary companion is the most likely explanation. Assuming a stellar mass of $2.25{\pm}0.5$ $M_{\odot}$, we obtain a minimum planetary companion mass of $6.5{\pm}1.0$ $M_{Jup}$, with an orbital semi-major axis of $1.8{\pm}0.1$ AU, and an eccentricity of $0.3{\pm}0.1$ around ${\sigma}$ Per.

A likely exoplanet around F5 supergiant ${\alpha}$ Persei near the Cepheid instability strip

  • 이병철;한인우;박명구;김강민
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • To search for and study the nature of the long-periodic variations of massive stars, we have been carrying out a precise radial velocity (RV) survey for supergiants. Here, we present high-resolution RV measurements of ${\alpha}$ Per which lies near the Cepheid instability strip from November 2005 to February 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). The orbital solution yields a period of 129 days, a 2K amplitude of 80 m/s, and an eccentricity of 0.1. Assuming a possible stellar mass of 7.3 $M{\bigodot}$, we estimate the minimum mass for the planetary companion to be 7.5 MJup with the orbital semi-major axis of 0.97 AU. We do not find the correlation between RV variations and chromospheric activity indicator (Ca II H & K region). The Hipparcos photometry and bisector velocity span (BVS) do not show any obvious correlations with RV variations. These analyses suggest that ${\alpha}$ Per is a pulsating supergiant that hosts an exoplanet. If the 129 days variations of ${\alpha}$ Per do not come from an exoplanet but Cepheid-like pulsations, the theoretical boundary of the Cepheid instability strip may need to be extended to the bluer side.

  • PDF