• Title/Summary/Keyword: masonry structure

Search Result 200, Processing Time 0.023 seconds

A Study on the Mireuksajiseoktap through the Structural Type of the Buddhist Pagoda in Ancient East Asia (고대 동아시아 불탑 구조체계를 통해 본 미륵사지석탑)

  • Cho, Eun-Kyung;Park, Eon-Kon
    • Journal of architectural history
    • /
    • v.20 no.5
    • /
    • pp.7-29
    • /
    • 2011
  • This research was to suggest the types according to structural system of the pagoda in ancient East-Asia and analyze the pagoda to the west of Mireuksaji temple site by these types. It will be possible to understand consistently the relation of the various form of the pagoda. The results of this research were described separately as follows. 1. The Buddhist pagodas founded in the ancient East Asia can be categorized according to their structural system, which provide us with insight to understand the interrelationship of categories. The pagoda is mainly classified into three categories. The first consists of two structures, an internal and an external structure. The second exposes its internal structure to the outside, and the third has the external components changing into the internal ones. 2. Although the pagoda to the west of Mireuksaji Temple Site have an internal and an external structures, it actually solves the structural problem by adopting the masonry structure in the outside as well as in the inside. Especially in this structural consideration can be found in the stylobate and the foundation structure of the pillar. The plan of the pagoda to the west of Mireuksaji Temple Site was intended to reveal the plane of the post-lintel layered construction which has a member, a main pillar, and the inner space in the cube with stones.

A Study on the Techniques of Preservation Technology in the Brick Structure of Modern Architectural Properties (근대건축문화재의 벽돌조 건축물 보존기술 기법에 관한 연구)

  • Woo, Nam-Sic;Kwon, Soon-Chan;Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.13 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • The maintenance works for brick-structured buildings are a new field in Korea, and practical cases are yet inadequate so that such works may cause adverse effects of damaging the buildings after all. Therefore, this study has extracted a preservation technology believed to be most desirable in minimizing the damage to the original state of the buildings and preserving the value as the cultural assets through maintenance work details from 1986 to 2010 regarding brick-structured buildings designated as cultural properties. Firstly, a brick replacement method of using the brick used at the time of construction is efficient in replacement and repair of brick material for preserving value of cultural assets and minimizing damage of the original form. Secondly, use of lime mortar through material analysis is effective in repair of masonry joint and mortar but it is not used often due to high experimental cost. Finally, reinforcement of structure using a form for a building with severe damage is most efficient when considering additional problems. However, damage on the original form of a building can be minimized and value of a building can be preserved only when consideration on sufficient case analysis, materials to be used, and conditions of a building is supported.

Health-monitoring and system-identification of an ancient aqueduct

  • Chrysostomou, Christis Z.;Stassis, Andreas
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.183-194
    • /
    • 2008
  • An important historical monument of Cyprus is an aqueduct that was built in 1747 to provide water to the city of Larnaca and to its port. Because of its importance to the cultural heritage of Cyprus, the aqueduct has been selected as one of the case-study monuments in the project Wide-Range Non-Intrusive devices toward Conservation of Historical Monuments in the Mediterranean Area (WIND-CHIME). Detailed drawings of the aqueduct obtained from the Department of Antiquities of Cyprus have been used for the development of a computational model. The model was fine-tuned through the measurement of the dynamic characteristics of the aqueduct using forced and ambient vibrations. It should be noted that measurement of the dynamic characteristics of the structure were performed twice in a period of three years (June of 2004 and May of 2007). Significant differences were noted and they are attributed to soil structure interaction effects due to seasonal variations of the water-level in a nearby salt-lake. The system identification results for both cases are presented here. This monument was used to test the effectiveness of shape memory alloy (SMA) pre-stressed devices, which were developed during the course of the project, in protecting it without spoiling its monumental value.

Parameters affecting the fundamental period of infilled RC frame structures

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Tsaris, Athanasios K.;Di Trapani, Fabio;Cavaleri, Liborio
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.999-1028
    • /
    • 2015
  • Despite the fact that the fundamental period appears to be one of the most critical parameters for the seismic design of structures according to the modal superposition method, the so far available in the literature proposals for its estimation are often conflicting with each other making their use uncertain. Furthermore, the majority of these proposals do not take into account the presence of infills walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period numerical value. Toward this end, this paper presents a detailed and indepth analytical investigation on the parameters that affect the fundamental period of reinforce concrete structure. The calculated values of the fundamental period are compared against those obtained from the seismic code and equations proposed by various researchers in the literature. From the analysis of the results it has been found that the number of storeys, the span length, the stiffness of the infill wall panels, the location of the soft storeys and the soil type are crucial parameters that influence the fundamental period of RC buildings.

A Study on the Slope Stability Assessment of Seokguram Region in Gyeongju (경주 석굴암 주변 비탈면의 안정성에 관한 연구)

  • Lee, Kwang-Wu;Kim, Seung-Hyun;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.139-149
    • /
    • 2017
  • The maintenance, repair, and reinforcement projects and structural stability assessments of Seokguram have primarily focused on examining the condition of stone members of Seokguram and the concrete dome structure for Seokguram. However, a 12 m-high rock slope located behind Seokguram raises a concern of slope failure and rockfall, which may reduce stability of Seokguram. It is also unclear whether the soil slopes and masonry wall at the side and the front of Seokguram have sufficient long-term stability against localized heavy rains and earthquakes, which have been frequent in recent years. The present study investigates the ground and the slopes around Seokguram using detailed field survey to identify geographical and geological risk factors, and assess structural stability of the exposed rock mass behind and the slope in front of Seokguram and the masonry wall using stability analysis.

Determination of mortar strength using stone dust as a partially replaced material for cement and sand

  • Muhit, Imrose B.;Raihan, Muhammad T.;Nuruzzaman, Md.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.249-259
    • /
    • 2014
  • Mortar is a masonry product which is matrix of concrete. It consists of binder and fine aggregate and moreover, it is an essential associate in any reinforced structural construction. The strength of mortar is a special concern to the engineer because mortar is responsible to give protection in the outer part of the structure as well as at a brick joint in masonry wall system. The purpose of this research is to investigate the compressive strength and tensile strength of mortar, which are important mechanical properties, by replacing the cement and sand by stone dust. Moreover, to minimize the increasing demand of cement and sand, checking of appropriateness of stone dust as a construction material is necessary to ensure both solid waste minimization and recovery by exchanging stone dust with cement and sand. Stone dust passing by No. 200 sieve, is used as cement replacing material and retained by No. 100 sieve is used for sand replacement. Sand was replaced by stone dust of 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50% by weight of sand while cement was replaced by stone dust of 3%, 5%, and 7% by weight of cement. Test result indicates that, compressive strength of specimen mix with 35% of sand replacing stone dust and 3% of cement replacing stone dust increases 21.33% and 22.76% respectively than the normal mortar specimen at 7 and 28 days while for tensile it increases up to 13.47%. At the end, optimum dose was selected and crack analysis as well as discussion also included.

A Study on the Architectural Characteristics and Facade Construction of the Brick Masonry Auditorium in Daegu During the Modern Age - Focused on the Auditorium of Namsan Primary School - (근대기 대구지역 벽돌조 강당 건물의 건축특성과 파사드 구성에 관한 연구 - 남산초등학교 강당을 중심으로 -)

  • Yoon, Jae-Woong
    • Journal of architectural history
    • /
    • v.19 no.6
    • /
    • pp.121-135
    • /
    • 2010
  • This study was to analyze the architectural characteristics and facade construction of brick masonry auditorium through the Auditorium of Namsan Primary School in 1936. The results of this study were described separately as follows. 1. The auditorium is located away from the school buildings, and its plane is a chamber of rectangle type with an entrance installed on each of the four sides. 2. The external appearance is Renaissance eclectic style, laid red bricks on the lower wall of the window and having a mansard roof. The front and the rear are symmetric with respect to the projected wall at the center. 3. As to the structure of the building, a concrete lower wall was built on the concrete continuous footing, and the brick wall was constructed on the lower wall. The roof is queen post roof truss, and the wall girders were installed on the brick wall. 4. The auditorium has had a number of repairing and maintenance works, which changed the roof and windows outside and the floor, walls, ceiling, etc. inside. 5. The decorative elements of external appearance include lower wall, brick wall, entrances, windows, roof, and dormer windows. The brick wall gives verticality and solidity to the surface of the wall, and the lower wall and wall girders are connected like a cornice of the wall. The surface of the mansard roof and dormer windows express a stable vertically oriented shape.

Computational analysis of three dimensional steel frame structures through different stiffening members

  • Alaskar, Abdulaziz;Wakil, Karzan;Alyousef, Rayed;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.187-197
    • /
    • 2020
  • Ground motion records are commonly used for fragility curves (FCs) developing utilized in seismic loss estimating analysis for earthquake prone zones. These records could be 'real', say the recorded acceleration time series or 'simulated' records consistent with the regional seismicity and produced by use of alternative simulation methods. This study has focused on fragility curves developing for masonry buildings through computational 'simulated' ground motion records while evaluating the properness of these fragilities compared to the curves generated by the use of 'real' records. Assessing the dynamic responses of structures, nonlinear computational time history analyses through the equivalent single degree of freedom systems have been implemented on OpenSees platform. Accordingly, computational structural analyses of multi-story 3D frame structures with different stiffening members considering soil interaction have been carried out with finite element software according to (1992) Earthquake East-West component. The obtained results have been compared to each frame regarding soil interaction. Conclusion and recommendations with the discuss of obtaining findings are presented.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

A Study on the Roof Landscape Characteristics of Rural Villages - Focused on Road-Side Rural Villages - (농촌마을 지붕경관 특성에 관한 조사 연구 - 가로변 농촌마을을 대상으로 -)

  • Kim, Yun-Hag
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.15 no.3
    • /
    • pp.17-24
    • /
    • 2013
  • This study examined and investigated architectural characteristics such as the use of buildings, the number of layers, and structure, and roof landscape characteristics such as roof types, materials, and color in rural villages which were located on the street on the assumption that the landscape of rural villages should be managed by considering visual aspects. The results were as follows. The commonest frequency was found in 'residence'(2/3) for the use of buildings and 'masonry structure'(2/3) for the structure. 'Wood structure' and 'light gauge steel structure(prefabricated structure)' were also commonly found. The results suggest that although many rural houses have partially improved by agricultural and fishery development projects and garden suburbs has been increased by city residents' desire for rural life, there have been still many old houses. Frequently used roof types were a gambrel roof and a hipped roof. Roof materials were mixed in several materials such as tiles, slate, panels, color steel plate, reinforced concrete, and asphalt shingles. Roof color was also mixed in several colors such as reddish N7 and N0.5 of Neutral color, 10R3/6 and 10R3/10 of R color, 7.5B4/10 and 7.5B7/8 of B color and 5G8/6 of G color. The result suggests that roof color impedes the landscape of rural villages on the street. Based on the results, some roofs of rural villages were improved by the support of the government or the local governments but there are still many old roofs. The mixture of improved roofs and old roofs mainly contributed to impeding the landscape of rural villages and it was probably caused by the lack of systematic landscape plans by individual improvement of buildings. Therefore, it is necessary to devise systematic landscape plans in consideration of local identity and neighboring environment. In particular, the guideline for roof color influencing a street landscape should be established.