• Title/Summary/Keyword: masonry construction

Search Result 167, Processing Time 0.031 seconds

Shear Strength Evaluation in Masonry Assemblages by Reinforcing Materials in Joint (줄눈 보강을 통한 면내 방향의 조적조 사인장 전단강도 평가)

  • Woo, Jong-Hun;Shin, Kyung-Jae;Lee, Jun-Seop;Han, Seung-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.191-198
    • /
    • 2019
  • All over the Republic of Korea, there are many masonry buildings which have been built since 1970s. When the earthquake at Po-Hang occurred, this is the main cause of huge damage because the masonry buildings have not seismic capacity. When masonry buildings are failed, two type of the failure modes can be shown, which are in-plane mode and out-plane mode. In-plane mode can have seismic capacity in masonry so diagonal shear test is performed in this study. The purpose of this study was to find the best way to reinforce the materials through the diagonal shear test. Through the test, shear stress and shear modulus of elasticity will be calculated, referred to the ASTM E 519-02. The variables in this test are ${\phi}3$ wire, three types of wire meshes, polypropylene strap and different types of brick. Each variable is applied to the same condition of the $1.2m{\times}1.2m$ masonry walls which are made by ASTM E 519-02. Compared to each variable with shear stress and shear modulus of elasticity, the best way of reinforcing method to have seismic capacity will be proved in this study.

Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke;Chi, Bo
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.387-399
    • /
    • 2022
  • To study the seismic damage of masonry structures and understand the characteristics of the multi-intensity region, according to the Dujiang weir urbanization of China Wenchuan earthquake, the deterioration of 3991 masonry structures was summarized and statistically analysed. First, the seismic damage of multistory masonry structures in this area was investigated. The primary seismic damage of components was as follows: Damage of walls, openings, joints of longitudinal and transverse walls, windows (lower) walls, and tie columns. Many masonry structures with seismic designs were basically intact. Second, according to the main factors of construction, seismic intensity code levels survey, and influence on the seismic capacity, a vulnerability matrix calculation model was proposed to establish a vulnerability prediction matrix, and a comparative analysis was made based on the empirical seismic damage investigation matrix. The vulnerability prediction matrix was established using the proposed vulnerability matrix calculation model. The fitting relationship between the vulnerability prediction matrix and the actual seismic damage investigation matrix was compared and analysed. The relationship curves of the mean damage index for macrointensity and ground motion parameters were drawn through calculation and analysis, respectively. The numerical analysis was performed based on actual ground motion observation records, and fitting models of PGA, PGV, and MSDI were proposed.

Performance Evaluation for Deteriorated Masonry in Military Facilities (조적조 노후 군시설의 성능 평가)

  • Yang Eun-Bum;Shin kyoung-Hee;Hwang Jong-Hyun;Kim In-Ho;Kim Yong-In;Park Tae-keun;Lee Chan Shik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.434-438
    • /
    • 2001
  • Military facilities with masonry construction have a great portion in the whole military facilities. But lots of them have been used for more than 20 years, the degree of deterioration of the facilities are very serious. Futhermore, as small budget for the facilities maintenance and poor maintenance, the performance of the aged masonry facilities have continually decreased. We suggest a structural performance assesment criteria for the military facility through literature review, interview with experts and questionnaire. The assesment of structural performance includes the inclining and sinking degree of the facilities, durability of materials and resisting force of the structural members.

  • PDF

A Study about the Relations between Brick Pagodas and Stone Brick Pagodas in Korea (한국(韓國) 전탑(甎塔)과 모전석탑(模甎石塔)의 관계성(關係性)에 관한 연구(硏究))

  • Han, Wook;Kim, Ji-Hyeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.7
    • /
    • pp.81-88
    • /
    • 2019
  • The purpose of this study is to investigate the relations between brick and stone brick pagodas in all classes of pagoda with their construction and shape. Research objects of this study are brick and stone brick pagodas of National Treasure and Treasure and masonry pagodas that are similar to brick and stone brick pagoda. This study includes checking preceding researches, drawing questions from these preceding researches, and finding answers from these questions. The results of this study are as follows. First, pagoda of Bunhwangsa Temple, the first pagoda in the Silla Dynasty, was built as a masonry pagoda, not a stone brick pagoda. Second, roofs of stone brick pagoda barrows from brick pagoda's techniques for performance of material and ease construction. Third, brick or stone brick pagodas' base have Type II that has low and extensive foundation with soil and stones usually. Forth, Korean pagodas are categorized by their materials, construction methods, and shapes. Wooden pagodas, stone pagodas, and brick pagodas are categorized by materials, post-and lintel pagodas and masonry stone pagodas are categorized by construction methods, and pitched roof pagodas and terraced roof pagodas are categorized by shapes. Fifth, masonry pagodas of Buddhism that have shape of multi-story building were developed from Doltap, traditional stone stack, and they advanced with brick pagodas and stone pagodas to terraced roof stone pagodas and post-and lintel base brick pagodas.

The First Skyscraper Revisited

  • Ali, Mir M.;Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Debates on what is the first skyscraper have been ongoing from time to time since the construction of the Home Insurance Building in Chicago in 1885, which is generally recognized as the first built skyscraper. This paper attempts to verify this assertion through a detailed investigation after identifying the criteria that characterize a skyscraper. By considering and examining several competing buildings for the title of "first skyscraper" in terms of their levels of satisfying these criteria, the paper reconfirms that the Home Insurance Building in Chicago indeed qualifies as the first skyscraper and is the harbinger of future skyscrapers. By introducing technological and associated architectural innovations in this pioneering building, its designer William Le Baron Jenney paved the way for the construction of future skyscrapers. In traditional construction, heavy masonry walls especially at lower levels did not allow large window openings in exterior walls that would permit ample daylight. For the Home Insurance Building, originally built with 10 stories, Jenney created a metal-framed skeletal structure that carried the building's loads, making the building lighter and allowed for large windows permitting ample natural light to the building's interior. The exterior iron columns were encased in relatively small masonry piers mainly for fireproofing, weather-protection and façade aesthetics. Relying on the structural framing on the building's perimeter, the exterior masonry thus turned into a rudimentary "curtain wall" system, heralding the use of curtain wall construction in future skyscrapers. This building's innovative structural system led to what is known as the "Chicago Skeleton," and eventually produced remarkable skyscrapers all over the world.

An Estimation of Shear Capacity of Hexagonal Masonry Walls Under Cyclic Loading (반복하중을 받는 육각형 블록 벽체 전단내력평가)

  • Chang, Gug-Kwan;Seo, Dae-Won;Han, Tae-Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.205-214
    • /
    • 2010
  • Masonry structures have been used throughout the world for the construction of residential buildings. However, from a structural point of view, the masonry material is characterized by a very low tensile strength. Moreover, the bearing and shear capacity of masonry walls have been found to be vulnerable to earthquakes. In this study, to improve the seismic performance of masonry walls, hexagonal blocks were developed and six masonry walls made with hexagonal block were tested to failure under reversed cyclic lateral loading. This paper focuses on an experimental investigation of different types of wall with hexagonal blocks, i.e. walls with different hexagonal blocks and with different reinforcing bar arrangements, subjected to applied cyclic loads. The cracking, damage patterns and hysteretic feature were evaluated. Results from the hexagonal masonry wall were shown more damage reduction and less brittle failure in comparison to the existing rectangular masonry walls.

Pushover Tests of 1:5 Scale 3-Story Reinforced Concrete Frames

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup;Seon, Jin-Gyu
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.165-174
    • /
    • 1999
  • The objective of the research stated herein is to observe the elastic and inelastic behaviors and ultimate capacity of 1:5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames with and without infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained by an inverted triang1e by using the whiffle tree. From the test results, the relation ships between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry were investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry were compared.

  • PDF

A Study on Safety Management Indicators for Landscape Construction Field (조경시공현장 안전관리 항목에 관한 연구)

  • Park, Jae-Young
    • Journal of Environmental Science International
    • /
    • v.31 no.7
    • /
    • pp.653-663
    • /
    • 2022
  • Research activities and discussions on specialized areas reflecting the specificity of landscape construction are necessary. Therefore, this study was conducted with the purpose of presenting basic data for efficient field management by deriving items necessary for safety management in landscape construction fields through experts' opinions. A survey was conducted using Delphi analysis to derive "management items" and "safety management items according to landscape type" for landscape construction field safety for a total of 15 landscape construction specialists. The survey results showed that four top items were derived from the "management items" for the safety of landscape construction fields; they include: "safety and health management organization and education," "industrial safety and health management expenses," "payment of personal protection," and "establishment of safety measures." In addition, two to five items for each higher item appeared and resulted in a total of 13 lower items. Personnel, organization, budget, etc. for safety management are always required in the field, and the monitoring part of whether these elements are working was also taken up as a management item. In the "Management items according to each landscape construction" a total of eight landscape type were distinguished, they include: 'Reinforced concrete work', 'Masonry work', 'Plaster's work', 'Waterproof work', 'Stone masonry work', 'Pavement work', 'Facilities work', and 'Planting work'. Furthermore, two to seven sub-items for each construction type were derived, and a total of 35 management items were presented.

Investigation of rate dependent shear bond properties of concrete masonry mortar joints under high-rate loading

  • John E. Hatfield;Genevieve L. Pezzola;John M. Hoemann;James S. Davidson
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.519-533
    • /
    • 2024
  • Many materials including cementitious concrete-type materials undergo material property changes during high-rate loading. There is a wealth of research regarding this phenomenon for concrete in compression and tension. However, there is minimal knowledge about how mortar material used in concrete masonry unit (CMU) construction behaves in high-rate shear loading. A series of experiments was conducted to examine the bond strength of mortar bonded to CMU units under high-rate shear loading. A novel experimental setup using a shock tube and dynamic ram were used to load specially constructed shear triplets in a double lap shear configuration with no pre-compression. The Finite Element Method was leveraged in conjunction with data from the experimental investigation to establish if the shear bond between concrete masonry units and mortar exhibits any rate dependency. An increase in shear bond strength was observed when loaded at a high strain rate. This data indicates that the CMU-mortar bond exhibits a rate dependent strength change and illustrates the need for further study of the CMU-mortar interface characteristics at high strain rates.

Evaluation of Seismic Capacity and Estimation of Earthquake Damage for Existing Unreinforced Masonry Building in Korea (국내 조적조 건물의 내진성능평가 및 지진피해율 상정)

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.535-542
    • /
    • 2006
  • In Seoul, more than 80 percent of residential buildings are constructed with unreinforced masonry(URM) buildings in early 1970 to 1990. In general, URM buildings have the advantages of reducing the construction time and easy to construction. However, URM buildings do not have enough strength against the lateral force. Moreover, low rise buildings have not adopted seismic designs, and for that reason a critical damage is expected with an earthquake. And also, the necessity of the seismic performance evaluation of existing building structures is raised through the Taiwan earthquake in 1999. The purpose of this study is to provide basic information for unreinforced masonry building in Korea by application of the proposed seismic evaluation method. In this study, seismic capacities of 50 existing unreinforced masonry buildings are evaluated based on the proposed method. Also, relationships of seismic capacities between Korean earthquake damage ratios of korean unreinforced masonry buildings are estimated. Results of this study were as follows; 1)Seismic retrofit was needed $8{\sim}48%$ in Korean unreinforced masonry buildings. 2)Korean unreinforced masonry buildings were expected to have severe damage under the earthquake intensity level experienced in Japan.