• 제목/요약/키워드: masonry bridges

검색결과 26건 처리시간 0.024초

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

Out-of-plane seismic failure assessment of spandrel walls in long-span masonry stone arch bridges using cohesive interface

  • Bayraktar, Alemdar;Hokelekli, Emin;Halifeoglu, Meral;Halifeoglu, Zulfikar;Ashour, Ashraf
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.83-96
    • /
    • 2020
  • The main structural elements of historical masonry arch bridges are arches, spandrel walls, piers and foundations. The most vulnerable structural elements of masonry arch bridges under transverse seismic loads, particularly in the case of out-of-plane actions, are spandrel wall. The vulnerability of spandrel walls under transverse loads increases with the increasing of their length and height. This paper computationally investigates the out-of-plane nonlinear seismic response of spandrel walls of long-span and high masonry stone arch bridges. The Malabadi Bridge with a main arch span of 40.86m and rise of 23.45m built in 1147 in Diyarbakır, Turkey, is selected as an example. The Concrete Damage Plasticity (CDP) material model adjusted to masonry structures, and cohesive interface interaction between the infill and the spandrel walls and the arch are considered in the 3D finite element model of the selected bridge. Firstly, mode shapes with and without cohesive interfaces are evaluated, and then out-of-plane seismic failure responses of the spandrel walls with and without the cohesive interfaces are determined and compared with respect to the displacements, strains and stresses.

Structural performance of renovated masonry low bridge in Amasya, Turkey

  • Cakir, Ferit;Seker, Burcin S.
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1387-1406
    • /
    • 2015
  • Masonry bridges are the vital components of transportation systems. Although these bridges were constructed centuries ago, they have served a purpose from ancient times to the present day. However, the bridges have needed local renovation and therefore have been rebuilt over different periods in many places. This study focuses on Low Bridge, which is an example of renovated masonry bridges in Turkey. It essentially assesses the structural behavior of the masonry bridge and investigates the integrity of the renovated components. For this purpose, the mechanical properties of the bridge material have been primarily evaluated with experimental tests. Then the static, modal and nonlinear time history analyses have been carried out with the use of finite element methods in order to investigate the structural behavior of the current form of the bridge.

Nonlinear seismic response of a masonry arch bridge

  • Sayin, Erkut
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.483-494
    • /
    • 2016
  • Historical structures that function as a bridge from past to present are the cultural and social reflections of societies. Masonry bridges are one of the important historical structures. These bridges are vulnerable against to seismic action. In this study, linear and non-linear dynamic analyses of historical Nadir Bridge are assessed. The bridge is modelled with three dimensional finite elements. For the seismic effect, artificial acceleration records are generated considering the seismic characteristics of the region where the bridge is located. Seismic response of the bridge is investigated.

Numerical model for nonlinear analysis of composite concrete-steel-masonry bridges

  • Baloevic, Goran;Radnic, Jure;Grgic, Nikola;Matesan, Domagoj;Smilovic, Marija
    • Coupled systems mechanics
    • /
    • 제5권1호
    • /
    • pp.1-20
    • /
    • 2016
  • This paper firstly briefly describes developed numerical model for both static and dynamic analysis of planar structures made of concrete, steel and masonry. The model can simulate the main nonlinearity of such individual and composite structures. The model is quite simple and based on a small number of material parameters. After that, three real composite concrete-steel-masonry bridges were analyzed using the presented numerical model. It was concluded that the model can be useful in practical analysis of composite bridges. However, future verifications of the presented numerical model are desirable.

Evaluating effects of various water levels on long-term creep and earthquake performance of masonry arch bridges using finite difference method

  • Cavuslu, Murat
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.31-52
    • /
    • 2022
  • Investigating and evaluating the long-term creep behavior of historical buildings built on seismic zones is of great importance in terms of transferring these structures to future generations. Furthermore, assessing the earthquake behavior of historical structures such as masonry stone bridges is very important for the future and seismic safety of these structures. For this reason, in this study, earthquake analyses of a masonry stone bridge are carried out considering strong ground motions and various water levels. Tokatli masonry stone arch bridge that was built in the 10th century in Turkey-Karabük is selected for three-dimensional (3D) finite difference analyses and this bridge is modeled using FLAC3D software based on the three-dimensional finite difference method. Firstly, each stone element of the bridge is modeled separately and special stiffness parameters are defined between each stone element. Thanks to these parameters, the interaction conditions between each stone element are provided. Then, the Burger-Creep and Drucker-Prager material models are defined to arch material, rockfill material for evaluating the creep and seismic failure behaviors of the bridge. Besides, the boundaries of the 3D model of the bridge are modeled by considering the free-field and quiet boundary conditions, which were not considered in the past for the seismic behavior of masonry bridges. The bridge is analyzed for 6 different water levels and these water levels are 0 m, 30 m, 60 m, 70 m, 80 m, and 90 m, respectively. A total of 10 different seismic analyzes are performed and according to the seismic analysis results, it is concluded that historical stone bridges exhibit different seismic behaviors under different water levels. Moreover, it is openly seen that the water level is of great importance in terms of earthquake safety of historical stone bridges built in earthquake zones. For this reason, it is strongly recommended to consider the water levels while strengthening and analyzing the historical stone bridges.

무사석과 적심석이 홍예교량의 동적특성에 미치는 영향 (The Influence of Spandrel Wall and Fill on the Dynamic Characteristics of Historic Stone Masonry Arch Bridges)

  • 이수곤;이성민;송창영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권3호
    • /
    • pp.161-168
    • /
    • 2005
  • 홍예교랑에서 무사석 및 적심석이 구조적특성이나 내하력에 미치는 영향에 대해서는 아직도 제대로 연구된 바가 없다. 특히 대부분의 홍예형 구조들이 문화재로 지정되어 있어 실물테스트를 하는 것은 매우 곤란하다. 석조구조물의 동적특성을 파악하면 접촉면의 강성을 파악할 수 있으므로 구조해석시 유용한 정보를 구할 수 있다. 본 연구는 무사석 및 적심석이 없는 5개의 홍예구조물과 우리나라 18개 홍예교량의 동적특성을 비교 분석함으로써 무사석 및 적심석 유무에 따른 고유진동수의 차이를 규명하는 방법으로 수행되었다. 연구결과 줄눈에 모르타르를 사용하지 않은 홍예구조의 경간에 따른 고유진동수는 우리나라 홍예교의 고유진동수보다 현저히 낮은 것으로 조사되었으며, 이러한 사실을 통해 볼 때 무사석 및 적심석이 홍예교의 고유진동수를 높이는 역할을 함을 알 수 있다.

Rapid evaluation of in-plane seismic capacity of masonry arch bridges through limit analysis

  • Breccolotti, Marco;Severini, Laura;Cavalagli, Nicola;Bonfigli, Federico M.;Gusella, Vittorio
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.541-553
    • /
    • 2018
  • In this paper a limit analysis based procedure for the rapid evaluation of the in-plane seismic capacity of masonry arch bridges is carried out. Attention has been paid to the effect of the backfill on the collapse load. A parametric investigation has been performed by varying the rise/span ratio and the results have been compared with those obtained by finite element modelling. The comparison highlights the conservative feature of the proposed model in terms of ultimate loads and a good agreement in terms of collapse mechanisms.

Minimum cost strengthening of existing masonry arch railway bridges

  • Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.271-282
    • /
    • 2020
  • The preservation of historic masonry-arch railway bridges is of paramount importance due to their economic benefits. These bridges which belong to past centuries may nowadays be expected to carry loads higher than those for which they were designed. Such an increase in loads may be because of increase in transportation speed or in the capacity of freight-wagons. Anyway, adequate increase in their load-carrying-capacity through structural-strengthening is required. Moreover, the increasing costs of material/construction urge engineers to optimize their designs to obtain the minimum-cost one. This paper proposes a novel numerical optimization method to minimize the costs associated with strengthening of masonry-arch railway bridges. To do so, the stress/displacement responses of Sahand-Goltappeh bridge are assessed under ordinary train pass as a case study. For this aim, 3D-Finite-Element-Model is created and calibrated using experimental test results. Then, it is strengthened such that following goals are achieved simultaneously: (1) the load-carrying-capacity of the bridge is increased; (2) the structural response of the bridge is reduced to a certain limit; and, (3) the costs needed for such strengthening are minimized as far as possible. The results of the case study demonstrate the applicability/superiority of the proposed approach. Some economic measures are also recommended to further reduce the total strengthening cost.

Structural response of historical masonry arch bridges under different arch curvature considering soil-structure interaction

  • Altunisik, Ahmet Can;Kanbur, Burcu;Genc, Ali Fuat;Kalkan, Ebru
    • Geomechanics and Engineering
    • /
    • 제18권2호
    • /
    • pp.141-151
    • /
    • 2019
  • In this paper, it is aimed to present a detail investigation about the comparison of static and dynamic behavior of historical masonry arch bridges considering different arch curvature. $G{\ddot{o}}derni$ historical masonry two-span arch bridge which is located in Kulp town, Diyarbakir, Turkey is selected as a numerical application. The bridge takes part in bowless bridge group and built in large measures than the others. The restoration projects were approved and rehabilitation studies have still continued. Finite element model of the bridge is constituted with special software to determine the static and dynamic behavior. To demonstrate the arch curvature effect, the finite element model are reconstructed considering different arch curvature between 2.86 m-3.76 m for first arch and 2.64 m-3.54 m for second arch with the increment of 0.10 m, respectively. Dead and live vehicle loads are taken into account during static analyses. 1999 Kocaeli earthquake ground motion record is considered for time history analyses. The maximum displacements, principal stresses and elastic strains are compared with each other using contour diagrams. It is seen that the arch curvature has more influence on the structural response of historical masonry arch bridges. At the end of the study, it is seen that with the increasing of the arch heights, the maximum displacements, minimum principal stresses and minimum elastic strains have a decreasing trend in all analyses, in addition maximum principal stresses and maximum elastic strains have unchanging trend up to optimum geometry.