• 제목/요약/키워드: marker pig

검색결과 130건 처리시간 0.017초

Haptoglobin SNP의 돼지 일당 증체량에 관한 효과 (Effects of SNPs in Haptoglobin on Average Daily Gain in Pig)

  • 김명직;정호영;조규호;전기준;김진형
    • 한국수정란이식학회지
    • /
    • 제23권3호
    • /
    • pp.197-201
    • /
    • 2008
  • In order to provide information of genetic variants for Haptoglobin (Hp) gene, which may be related to weight traits in pig, a total of 235 animals from National Institute of Animal Science (NIAS) were screened with 3 primers. The primer sequences were selected using the porcine cDNA sequences based on NM_214000, and the exon boundaries were estimated. Genetic variants were observed using direct sequencing analysis, and there were 9 SNPs detected at nucleotide positions 503 (A/G), 509 (A/G), 709 (C/T), 734 (C/A), 742 (G/A), 769 (A/G), 840 (C/T), 876 (C/T) and 882 (C/A). All the SNPs were located in coding regions, and mutations caused amino acid changes at nucleotide positions 503, 509, 734, 742 and 769. Allele frequencies of SNPs were estimated for all segments. The SNPs at nucleotide position 509 (p<0.0001) and 734 (p<0.05) were significantly associated with average daily gain, but no significance was observed with other SNPs. From the results, the identified SNPs may be a useful candidate marker for the porcine weight gain traits.

Analysis of Outer Membrane Proteins of Yersinia enterocolitica Isolated from Mountainspring Water and Pig

  • Shin, Sung-Jae;Park, Joo-Youn;Park, In-Soo;Shin, Na-Ri;Lee, Deog-Yong;Cho, Young-Wook;Park, Yong-Ha;Yoo, Han-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.674-678
    • /
    • 2002
  • Yersinia enterocolitica causes various diseases in humans, including enteritis. The onset of such diseases is closely related with the expression of important virulence factors, particularly outer membrane proteins (OMPs). The expression of OMPs depends on several factors, including temperature, and origin, biotype and serotype of the bacteria. Recently, concerns over food safety have increased along with the demand for the development of sensitive, rapid, and pathogen-specific detection methods. To develop a suitable detection method for Y. enterocolitica isolated from Korean moutainspring water and pig feces, the OMP expression patterns were analyzed phenotypically and immunologically using 12 representative strains from 51 Y. enterocolitica Korean isolates. A 38-kDa OMP was commonly observed in all strains. However, additional OMPs were also observed in different biotypes and serotypes as well as bacterial origins, by incubating Y. enterocolitica at a low temperature. The specificity of the 38-kDa OMP was confirmed by a Western blot analysis with antisera against Y. enterocolitica and Brucella abortus. The results, therefore, indicate that the 38-kDa OMP could be used as a marker for detecting Y. enterocolitica in the environment or for seromonitoring.

Association between PCR-RFLP Polymorphism of the Fifth Intron in Lipoprotein Lipase Gene and Productive Traits in Pig Resource Family

  • Zhang, B.Z.;Lei, M.G.;Deng, C.Y.;Xiong, Y.H.;Zuo, B.;Li, F.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권4호
    • /
    • pp.458-462
    • /
    • 2005
  • The study was aimed at detecting polymorphism of the fifth intron in lipoprotein lipase (LPL) gene and analyzing association between the polymorphism and productive traits. A pair of primers was designed for amplifying the fifth intron. Sequence analysis indicated that a G1171C substitution existed in Large White breed. The mutation was detected by PCR-AfaI-RFLP. Polymorphism analysis in a pig resource family showed that there existed significant effects on carcass and meat quality traits. Thoraxwaist fat thickness of BB genotype was significantly higher (14.2%, p<0.05) than that of AA on carcass traits, while BB genotype was significantly lower (3.6% p<0.01, 4.1% p<0.01; 2.3% p<0.01, 1.9% p<0.01; 1.8% p<0.01, 1.4% p<0.05) than AA and AB genotype in pH of m. Longissimus Dorsi (LD), m. Biceps Femoris (BF), m. Semipinali Capitis (SC). The allelic frequencies were also significantly different between indigenous Chinese breeds and exotic breeds. Data analyzed revealed that the mutation locus affected production traits mostly by additive effects. Based on these results, it is necessary to do more studies on LPL gene before making the LPL locus into the application of marker-assisted selection (MAS) programs.

Association of functional sequence variants of the myosin heavy chain 3 gene with muscle collagen content in pigs

  • Yong-Jun Kang;Sang-Hyun Han;Sang-Geum Kim;Su-Yeon Kim;Hyeon-Ah Kim;Yoo-Kyung Kim;Ji-Hyun Yoo;Moon-Cheol Shin;Byoung-Chul Yang;Hee-Bok Park;Jun Heon Lee;In-Cheol Cho
    • Journal of Animal Science and Technology
    • /
    • 제65권3호
    • /
    • pp.511-518
    • /
    • 2023
  • This study examined the association between functional sequence variants (FSVs) of myosin heavy chain 3 (MYH3) genotypes and collagen content in a Landrace and Jeju native pig (JNP) crossbred population. Four muscles (Musculus longissimus dorsi, Musculus semimembranosus, Musculus triceps brachii, and Musculus biceps femoris) were used for the analysis of meat collagen content, and the same animals were genotyped for the FSVs of the MYH3 gene by using PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism). Three FSVs of MYH3 genotypes were identified and had genotype frequencies of 0.358, 0.551, and 0.091 for QQ, Qq, and qq, respectively. QQ animals for the FSVs of the MYH3 genotypes showed higher collagen content in their M. longissimus dorsi (p < 0.001), M. semimembranosus (p < 0.001), M. triceps brachii (p < 0.001), and M. biceps femoris (p < 0.001) than qq homozygous animals. After the validation of this result in other independent populations, the FSVs of MYH3 genotypes can be a valuable genetic marker for improving collagen content in porcine muscles and can also be applied to increase the amount of collagen for biomedical purposes.

NANOG expression in parthenogenetic porcine blastocysts is required for intact lineage specification and pluripotency

  • Mingyun Lee;Jong-Nam Oh;Gyung Cheol Choe;Kwang-Hwan Choi;Dong-Kyung Lee;Seung-Hun Kim;Jinsol Jeong;Yelim Ahn;Chang-Kyu Lee
    • Animal Bioscience
    • /
    • 제36권12호
    • /
    • pp.1905-1917
    • /
    • 2023
  • Objective: Nanog homeobox (NANOG) is a core transcription factor that contributes to pluripotency along with octamer binding transcription factor-4 (OCT4) and sex determining region-Y box-2 (SOX2). It is an epiblast lineage marker in mammalian pre-implantation embryos and exhibits a species-specific expression pattern. Therefore, it is important to understand the lineage of NANOG, the trophectoderm, and the primitive endoderm in the pig embryo. Methods: A loss- and gain-of-function analysis was done to determine the role of NANOG in lineage specification in parthenogenetic porcine blastocysts. We analyzed the relationship between NANOG and pluripotent core transcription factors and other lineage makers. Results: In NANOG-null late blastocysts, OCT4-, SOX2-, and SOX17-positive cells were decreased, whereas GATA binding protein 6 (GATA6)-positive cells were increased. Quantitative real-time polymerase chain reaction revealed that the expression of SOX2 was decreased in NANOG-null blastocysts, whereas that of primitive endoderm makers, except SOX17, was increased. In NANOG-overexpressing blastocysts, caudal type homeobox 2 (CDX2-), SOX17-, and GATA6-positive cells were decreased. The results indicated that the expression of primitive endoderm markers and trophectoderm-related genes was decreased. Conclusion: Taken together, the results demonstrate that NANOG is involved in the epiblast and primitive endoderm differentiation and is essential for maintaining pluripotency within the epiblast.

Characterization of the porcine Nanog 5'-flanking region

  • Memon, Azra;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권3호
    • /
    • pp.449-456
    • /
    • 2018
  • Objective: Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods: To characterize the porcine Nanog promoter, the 5'-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5'-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results: Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from -99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion: We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.

Yorkshire종 돼지에서 PCR-RFLP을 이용한 Estrogen Receptor의 유전적 다형과 산자수간의 관련성 (Association of Genetic Polymorphisms of Estrogen Receptor with Litter Size using PCR-RFLP in Yorkshire Swine)

  • 김지은;송원철;최봉도;고용;박성수;홍기창
    • Journal of Animal Science and Technology
    • /
    • 제45권4호
    • /
    • pp.523-528
    • /
    • 2003
  • 본 연구는 PvuII PCR-RFLP를 이용하여 Yorkshire종 돼지에서 Estrogen Receptor의 유전적 다형과 산자수간의 관련성을 분석하기 위하여 수행되었다. 무창 돈사에서 사육중인 242두의 종빈돈으로부터 혈액을 채취하여 PvuII PCR- RFLP로 ER 유전자형을 결정하였다. ER 유전자 좌위에서 유전자 빈도는 각각 0.39(A)와 0.61(B)였다. ER 유전자형별 산자수에 대한 효과는 최소제곱평균을 설명하는 고정모형을 설정하여 추정하였다. 분석결과 복당 총산자수와 실산자수에서 특정 ER 대립유전자(B)에서 산자수 증진효과가 관찰되었다. 따라서 돼지 ER 좌위의 유전적 변이는 번식돈의 산자수 증대와 관련된 marker-assisted selection(MAS)에 응용될 수 있을 것으로 사료된다.

Detection of Quantitative Trait Loci Affecting Fat Deposition Traits in Pigs

  • Choi, B.H.;Lee, K.T.;Lee, H.J.;Jang, G.W.;Lee, H.Y.;Cho, B.W.;Han, J.Y.;Kim, T.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권11호
    • /
    • pp.1507-1510
    • /
    • 2012
  • Quantitative trait loci (QTL) associated with fat deposition traits in pigs are important gene positions in a chromosome that influence meat quality of pork. For QTL study, a three generation resource population was constructed from a cross between Korean native boars and Landrace sows. A total of 240 F2 animals from intercross of F1 were produced. 80 microsatellite markers covering chromosomes 1 to 10 were selected to genotype the resource population. Intervals between adjacent markers were approximately 19 cM. Linkage analysis was performed using CRIMAP software version 2.4 with a FIXED option to obtain the map distances. For QTL analysis, the public web-based software, QTL express (http://www.qtl.cap.ed.ac.uk) was used. Two significant and two suggestive QTL were identified on SSC 6, 7, and 8 as affecting body fat and IMF traits. For QTL affecting IMF, the most significant association was detected between marker sw71 and sw1881 on SSC 6, and a suggestive QTL was identified between sw268 and sw205 on SSC8. These QTL accounted for 26.58% and 12.31% of the phenotypic variance, respectively. A significant QTL affecting IMF was detected at position 105 cM between markers sw71 and sw1881 on SSC 6.

SLA Homozygous Korean Native Pigs and Their Inbreeding Status Deduced from the Microsatellite Marker Analysis

  • Jung, Woo-Young;Lim, Hyun-Tae;Lim, Jae-Sam;Kim, Sung-Bok;Jeon, Jin-Tae;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • 제52권6호
    • /
    • pp.451-457
    • /
    • 2010
  • The porcine MHC (Major Histocompatibility Complex), encoding the SLA (Swine Leukocyte Antigen) genes, is one of the most significant regions associated with immune rejection in relation to transplantation. In this study, three SLA class I (SLA-1, SLA-3, SLA-2) loci and three SLA class II (DRB1, DQB1, DQA) loci were investigated in the previously unidentified Korean native pig (KNP) population that was closely inbred in the Livestock Technology Research Station in Cheongyang, Korea. Total thirteen KNPs from four generations were genotyped for the SLA alleles and haplotypes were investigated using PCR-SSP (Sequence-Specific Primer) method. The results showed that all of these KNPs had Lr-56.30/56.30 homozygous haplotype, indicating high level of inbreeding in the SLA genes. The inbreeding status of these animals was also investigated using microsatellite (MS) markers. From the 50 MS markers investigated, 17 MS markers were fixed in all generations and the fixed alleles are increased as 26 loci for the fourth generation. Two MS markers, S0069 and SW173, were heterozygous for all the animals tested. Observed and expected heterozygosities were calculated and the average inbreeding coefficients for each generation were also calculated. In the fourth generation, the average inbreeding coefficients was 0.732 and this may increase with further inbreeding process. Analysis of the SLA haplotypes and MS alleles can give important information for breeding the pigs for xenotransplantation studies.

New Evidences of Effect of Melanocortin-4 Receptor and Insulin-like Growth Factor 2 Genes on Fat Deposition and Carcass Traits in Different Pig Populations

  • Chen, J.F.;Xiong, Y.Z.;Zuo, B.;Zheng, R.;Li, F.E.;Lei, M.G.;Li, J.L.;Deng, C.Y.;Jiang, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권11호
    • /
    • pp.1542-1547
    • /
    • 2005
  • The Melanocortin-4 Receptor (MC4R) and Insulin-like Growth Factor 2 (IGF2) are two important candidate genes related to fat deposition and carcass traits. MC4R was found on study on human obesity and then was studied as candidate gene affecting food intake and fat deposition traits in mice and pigs. Insulin-like Growth Factor 2 (IGF2) gene plays an important role on tumor cell proliferation and muscle growth. It also affects fat traits and live weight in pigs. In this paper, MC4R and IGF2 were studied as two candidate genes associated with important economic traits such as fat deposition and carcass traits in five different pig populations. Taq I-PCR-RFLP and Bcn I-PCR-RFLP were respectively used to detect the polymorphism of genotypes of MC4R and IGF2 genes. Different MC4R genotype frequencies were observed in four populations. IGF2 genotype frequencies were also different in two populations. The results of association analysis show both MC4R and IGF2 genes were significantly associated with fat deposition and carcass traits in about 300 pigs. This work will add new evidence of MC4R and IGF2 affecting fat deposition and carcass traits in pigs and show that two genes can be used as important candidate genes for marker assistant selection (MAS) of growth and lean meat percentage in pigs.