• Title/Summary/Keyword: maritime meteorology

Search Result 9, Processing Time 0.02 seconds

Study on Improving the Navigational Safety Evaluation Methodology based on Autonomous Operation Technology (자율운항기술 기반의 선박 통항 안전성 평가 방법론 개선 연구)

  • Jun-Mo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.74-81
    • /
    • 2024
  • In the near future, autonomous ships, ships controlled by shore remote control centers, and ships operated by navigators will coexist and operate the sea together. In the advent of this situation, a method is required to evaluate the safety of the maritime traffic environment. Therefore, in this study, a plan to evaluate the safety of navigation through ship control simulation was proposed in a maritime environment, where ships directly controlled by navigators and autonomous ships coexisted, using autonomous operation technology. Own ship was designed to have autonomous operational functions by learning the MMG model based on the six-DOF motion with the PPO algorithm, an in-depth reinforcement learning technique. The target ship constructed maritime traffic modeling data based on the maritime traffic data of the sea area to be evaluated and designed autonomous operational functions to be implemented in a simulation space. A numerical model was established by collecting date on tide, wave, current, and wind from the maritime meteorological database. A maritime meteorology model was created based on this and designed to reproduce maritime meteorology on the simulator. Finally, the safety evaluation proposed a system that enabled the risk of collision through vessel traffic flow simulation in ship control simulation while maintaining the existing evaluation method.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

A Design of Communication Network Architecture for E-Navigation Services (E-Navigation 서비스 제공을 위한 통신망 아키텍처의 설계)

  • Jeong, Jung-Sik;Kim, Sun-Young
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.37-45
    • /
    • 2008
  • The research on an E-Navigation(E-Nav) strategy development has recently carried out by the IMO sub-committee on safety of navigation(NAV). The design of communication system architecture is a key factor in the E-Nav strategy development and it may drive the direction of a national R&D project on future navigational and marine communication systems. This study aims at designing a standard model of E-Nav communication network architecture, which enhances navigational safety and provides additional benefits in marine transportation. To achieve this purpose, authors have suggested E-Nav services, which are divided into five categories, i.e., safety and security, maritime meteorology, distress, business, and infotainment, by analyzing the related user requirements. As results, this paper proposes the E-Nav communication network architecture that consists of the navigation and communication equipments.

Long-term Paradigm Analyses of Chlorophyll a and Water Quality in Reservoir Systems

  • Bach, Quang-Dung;Shin, Yong-Sik;Song, Eun-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.432-440
    • /
    • 2009
  • During the period of past fifteen years (1992~2006), variations of chlorophyll a in relation with water quality in freshwater reservoirs were investigated. This study compared total nitrogen (TN), total phosphorus (TP), chlorophyll a, Secchi depth (SD) and total suspended solids (TSS) between terrestrial freshwater reservoir and coastal freshwater reservoir systems based on their location. Regression analyses (linear and non-linear regressions) were applied for all study sites to examine relationship and interaction of these factors in the freshwater systems from in-land to coasts. The results demonstrated that chlorophyll a was significantly correlated to total phosphorus ($R^2=0.94$, P<0.0001) and was remarkably related to TSS increase ($R^2=0.63$, P<0.0001) in the selected reservoirs. The TN : TP ratio in the reservoir systems was higher than Redfield ratio (16 : 1) indicating that the reservoirs are potentially experiencing P limitation. Water quality of coastal freshwater reservoir system was more significantly decreased than the reservoirs located in in-land during the past fifteen years. The strict management of nutrient discharge into freshwater systems should implemented in the coastal reservoirs since the freshwater is introduced into coastal estuarine systems.

A Maritime Meteorological Research on the Ancient Sailing Route between Silla Korea and Tang China in the East China Sea (고대 동중국해 사단(斜斷)항로에 대한 해양기상학적 고찰)

  • Kim, Sung-June
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • The ancient sailing routes between Silla Korea and Tang China have been a hot issue among the researchers. Some assert that the Korean seafarers under Chang Po-go sailed the East China Sea directly from China to the Korean Peninsula with the assistance of mariner's compass on boarding V-shaped vessels in the 9th century. As we all know, Chinese used the mariner's compass in the 11th century and Europeans in the 12th century. In this paper, the author analyzed the maritime meteorological condition for sailing ships to navigate in the East China Sea and retraced the rafting route by Yun in 1997. As the results of analysis, the author confirmed that the maritime meteorological condition might be favorable for the seafarers to be capable of navigating in the East China Sea from China to Korea in June and July. But even the sea condition might be favorable, it must be God's will for the ancient seafarers to reach the Korean Peninsula. On Yun's rafting account, the author found out that there is a difference between the sailing route drawn by Yun himself and the actual drifted route and the raft drifted at 1.7~2.0 knots. This was quite an extraordinary speed considering the unfavorable sea condition and raft itself without keel. In conclusion, the author reaffirms that it was after the year 1068 for the seafarers to navigate in the East China Sea directly from China to Korea without any historical proofs or evidences.

Summary of 2014 JCOMM Pilot Inter-Comparison Project for Seawater Salinity Measurements (2014년 JCOMM 해수 염분 측정 국제 상호비교실험 결과 보고)

  • Lee, Jung-Han;Kim, Eun-Soo;Lee, Yong-Kuk
    • Ocean and Polar Research
    • /
    • v.38 no.3
    • /
    • pp.247-257
    • /
    • 2016
  • The inter-comparison project for seawater salinity measurements, in which 25 laboratories from 16 countries took part, was conducted by JCOMM (Joint WMO/IOC Technical Commission for Oceanography and Marine Meteorology) for the first time in 2014. Two seawater samples of different salinity values ranging from 30-35 and 20-25 for Sample A and Sample B respectively and which had sufficient homogeneity and stability were distributed to all participants. Participants measured the salinity in their own laboratories at least 3 times and reported the results. Statistical treatments were applied to the results to assess discrepancies among laboratories. 20 out of the 25 laboratories used laboratory salinometers and statistics for this group were denoted as belonging to group ${\alpha}$; while 5 out of the 25 laboratories used hand-held measuring instruments and statistics for this group were denoted as belonging to group ${\beta}$. Bias described as discrepancy among laboratories in group ${\alpha}$ was within ${\pm}0.001$ and expanded uncertainty (k = 2) was in the vicinity of 0.002. The bias and the uncertainty of Korea Institute of Ocean Science and Technology (KIOST), in group ${\alpha}$, were 0.000 and 0.002, respectively. The biases of group ${\beta}$ were greater than group ${\alpha}$ because of constraints related to instrument accuracy. Biases from 3 laboratories in group ${\beta}$ exceed the accuracy specification of the corresponding instruments. Considering that the uncertainty of Standard Seawater (SSW) is of the order 0.001 to 0.002, the inter-comparison results show that 16 laboratories among the 25 laboratories made high quality measurements, largely indistinguishable from one another.

Numerical Simulation of the Water Temperature in the Al-Zour Area of Kuwait

  • Lee, Myung Eun;Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.334-343
    • /
    • 2019
  • The Al-Zour coastal area, located in southern Kuwait, is a region of concentrated industrial water use, seawater intake, and the outfall of existing power plants. The Al-Zour LNG import facility project is ongoing and there are two issues regarding the seawater temperature in this area that must be considered: variations in water temperature under local meteorology and an increase in water temperature due to the expansion of the thermal discharge of expanded power plant. MIKE 3 model was applied to simulate the water temperature from June to July, based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the thermal discharge input from adjacent power plants. The annual water temperatures of two candidate locations of the seawater intake for the Al-Zour LNG re-gasification facility were measured in 2017 and compared to the numerical results. It was determined that the daily seawater temperature is mainly affected by thermal plume dispersion oscillating with the phase of the tidal currents. The regional meteorological conditions such as air temperature and tidal currents, also contributed a great deal to the prediction of seawater temperature.

Prediction of ocean surface current: Research status, challenges, and opportunities. A review

  • Ittaka Aldini;Adhistya E. Permanasari;Risanuri Hidayat;Andri Ramdhan
    • Ocean Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.85-99
    • /
    • 2024
  • Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.

Analysis on the Change in the Pan Evaporation Rate in the Coastal Zone (우리나라 연안의 팬증발량 변화 양상 분석)

  • Lee, Khil-Ha;Oh, Nam-Sun;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.244-252
    • /
    • 2007
  • A long-term change in the evaporation rate have an influence on the hydrologic processes at the interface between the land surface-air and crop yield. Several previous studies have reported declines in pan evaporation rate, while actual evaporation rate is expected to increase due to anthropogenic global change in the future. The decreasing trend of pan evaporation rate might be involved with global warming and accordingly the trend of annual pan evaporation rate also needs to be checked here in Korea. In this study, 14 points of pan evaporation observation are intensively studied to investigate the trend of pan evaporation for the time period of 1970-2000. Annual pan evaporation is decreasing at the rate of 1.6mm/yr, which corresponds to approximately 50mm for 30 years. Annual pan evaporation rate is larger by $\sim10%$ at the coastal area and decreasing rate is faster as -2.46 mm/yr per year, while that is -0.82 mm/yr per year at the in-land area. The results of the Mann-Kendall trend test shows 4 points are decreasing and 10 points are unchanged with 95% confidence interval. But national annual average values show the decreasing trend of pan evaporation rate as a whole, which corresponds to general trend all over the world. This study will contribute to a variety of studies on water resources, hydrology, agricultural engineering, meteorology, and coastal engineering in association with future global climate change.