• 제목/요약/키워드: marine diesel engine

검색결과 574건 처리시간 0.037초

디젤기관 착화실패가 크랭크축계 비틀림 진동에 미치는 환경의 이론적 고찰 (A theoretical investigation of misfiring effects on the crankshaft torsional vibration of diesel engine)

  • 전효중;임영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.94-106
    • /
    • 1986
  • Since the oil shock of '70s the engine makers have developed new types of diesel engine with low fuel consumption. There is an obvious tendency towards the use of poorer quality fuels, such as the residual oil from chemical processes of refinery. The shaft driving generators is also widely adopted on behalf of the auxiliary diesel engines, which are driving on the expensive diesel oil and have high fuel oil consumption rates, and some mania propulsion diesel engines are equipped with reduction gear systems to get better propulsive efficiency by slower propeller revolutions. The propulsion shafting system equipped with the shaft driving generator or the geared diesel engine shafting system has flexible couplings, and it requires extensive investigations of the torsional vibration and torque fluctuation in order to ensure the acceptable operation range in service. The characteristics of misfiring must be especially examined for the high viscosity fuels to be used. Both torsional vibration and fluctuating torque resulted from misfiring, should be examined for thier effects on the flexible coupling and propulsion shafting system. This paper is to investigate and solve the above mentioned problems which must be predicted on the design-stage of marine propulsion shafting system. A computer program is developed to calculate the indicated diagram, fluctating torque and torsional vibration for both normal and misfiring conditions.

  • PDF

선박용 4행정 디젤기관의 배기 과급기 엔진 매칭에 관한 해석적 연구 (An Analytical Study on the Turbocharger Engine Matching of the Marine Four-Stroke Diesel Engine)

  • 최익수;김현규;유봉환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.86-87
    • /
    • 2005
  • The combustion characteristics of the D.I. diesel engine are largely dependent on the air-fuel ratio and the gas exchange process. The main factors are the shape of combustion chamber, fuel injection system, air flow inside the cylinder, intake air mass flow rate and so forth. Because these factors affect the combustion in a mutual and combined manner, it is very important to clearly understand the correlation of these factors in order to provide the combustion improvement plans. In this paper, we studied the performance and the gas exchange process of marine four-stroke engine using the engine cycle simulation. Also, we predicted briefly turbocharger engine matching.

  • PDF

디젤기관의 토크 하모닉스에 대한 이론적 해석 (A Study on the Thoretical Analysis of the Torque Harmonics for Diesel Engines)

  • 이용진;장민오;김의간;전효중
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.465-473
    • /
    • 2000
  • In this crankshaft of marine diesel engines the exciting torques are produced by gas pressure and reciprocating masses. These torques are periodically changing and are extremely out of balance. To calculate the torsional vibrations of propulsion shafting caused by unbalanced torque the torque harmonics are utilized. Until now to calculate the torsional vibrations of propulsion shafting. the torque harmonics have been supplied by the engine maker. When the torque harmonics of an engine are not available the torque harmonics of a similar engine type had to be used. However such data is not suitable for the reliable calculations of torsional vibrations. In this paper the combustion characteristics of marine diesel engines including $\rho{-}\upsilon$ diagram are investigated and the torque harmonics based on these are theoretically calculated. reliability of the calculations is confirmed by comparing them with those of an engine maker. This study should prove useful for the calculations of torsional vibrations for diesel engine propulsion shafting. particularly for 4-stroke engines whose torque harmonics are difficult to obtain directly from the engine and not ordinarily supplied by the engine maker.

  • PDF

나노금속분말 윤활제를 적용한 산업용 디젤엔진의 성능 (The Performance of a Diesel Engine Using Lubricant Containing Nano-metal Powder)

  • 박권하;최재성;김대현;김영남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.670-676
    • /
    • 2008
  • A diesel engine requires a high Performance of lubrication because of the extreme conditions such as high temperature and pressure during combustion process in a cylinder. Many researches to improve the lubrication performance on the extreme condition have been executed. The lubricant oil suspended with nano-metal particles is the one of the measure. In this study, the nano-lubricant oil is applied on a commercial diesel engine, and the engine performance is tested. The results show the increase of maximum torque and the decrease of cylinder pressure, exhaust gas temperature, CO emission.

배기 흡입형 매연저감장치에 관한 실험적 연구 (An Experimental Study on the Smoke Reduction System of the Exhaust Gas Suction Type)

  • 기시우;최상수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.833-839
    • /
    • 2010
  • 오랫동안 디젤엔진의 성능에 지배적인 요인에 대하여 많은 연구들이 있었으며 디젤엔진의 오염 문제는 아직도 중요한 환경문제이다. 본 연구에서는 디젤엔진의 매연저감장치에 대한 새로운 제안을 한다. 새로운 제안은 진공압을 이용하여 매연을 포집한다. 새로운 제안을 확인하기 위해 엔진 다이나모시험을 수행하였다. 그 결과 매연을 줄일 수 있었다.

엔진 사이클 시뮬레이션에 의한 직분식 디젤기관의 NO 배출물에 미치는 흡기충전 조건의 영향에 관한 연구 (A Study on Effect of Intake Charging Conditions upon NO Emissions in a DI Diesel Engine Using Engine Cycle Simulation)

  • 함윤영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.679-687
    • /
    • 2002
  • In this study, a cycle simulation using a two-zone model is carried out to investigate the effect of intake charging conditions such as oxygen concentration, temperature and pressure on NO emissions in a DI diesel engine. The model is validated against measurements in terms of cylinder pressure, torque, BSFC and NOx emissions with 2902 cc DI diesel engine. Calculated results can be summarized as follows. The oxygen concentration in the intake charge is decreased with increasing of EGR rate and equivalence ratio. As the intake oxygen concentration is reduced, the combustion pressure and the burned gas temperature decrease and, as a result, NO formation decreases. Also, the results show that as the intake pressure increases and the intake temperature decreases, NO emissions are effectively reduced.

박용 디젤기관의 $NO_x$ 및 매연 배출물에 미치는 스크러버형 EGR 시스템 재순환배기의 영향에 관한 연구 (A Study on Effects of Recirculated Exhaust Gas upon $NO_x$ and Soot Emissions of a Marine Diesel Engine with Scrubber EGR System)

  • 배명환;하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.70-78
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of ;$NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The purpose of the present study is to develop the EGR control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal apparatus with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector is made up 144 nozzles with 1.0mm in diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration obtained by the intake air flow and the oxygen concentration in the recirculated exhaust gas, and the exhaust oxygen concentration measured in exhaust manifold are used to analyse and discuss the influences of EGR on NOx and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions decrease and soot emissions increase owing to the drop of intake oxygen concentration and exhaust oxygen concentration as EGR rate rises. Also, one can conclude that it is sufficient for the scrubber EGR system with a novel diesel soot removal apparatus to reduce $NO_x$ emissions, but not to reduce soot emissions.

  • PDF

디젤엔진 연료계통의 분사특성에 관한 연구 (A Study on the Injection Characteristics of Fuel Supply System of Diesel Engine)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.49-62
    • /
    • 1993
  • It has been a principle research topic on the diesel engine development to increase the efficiency and the performance of engine to satisfy the user's needs for high reliability and durability. However, recently with the worldwide concerns at the global climate change and environmental protection, the main target in the diesel engine research has been changed to solve the exhaust emission problem in order to satisfy the strict emission regulations. To reduce the pollutant for the diesel engine, the researchs on the combustion chamber is the most important and has to be performed first of all. The diesel fuel injection system plays major role to air-fuel mixing process and influences engine output, themal efficiency, reliability, noise, and emissions. The experimental studies were conducted by varying the various parametric conditions and the results were campared with the computation and calculated results by using the fuel injection simulation program developed during previous research. From the experiments, the matching technique of a fuel injection pump and nozzle was conducted to understand under the various parametric conditions. Also, the relations between needle lift and wave propagation characteristics in high pressure pipe were examined. The basic design data from the experimentations and computation works would be applied to actual design works of diesel fuel injection system.

  • PDF

바이오디젤 연료가 산업용 디젤 엔진 성능에 미치는 영향 (The Effect of Bio-diesel Fuel on Industrial Diesel Engine)

  • 박권하;김주연;김철정;고제현;박홍일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.72-77
    • /
    • 2012
  • 화석연료로부터 배출되는 유해 배기가스를 줄이기 위하여 대체연료기술이 개발되고 있다. 본 연구에서는 바이오디젤연료가 산업용디젤기관의 성능에 미치는 영향을 분석하기 위하여 대두유를 이용하여 연료를 제조하고 이를 엔진에 적용하여 성능시험을 수행하였다. 실험조건은 바이오디젤의 혼합율 0%, 10%, 20%에서 부하조건을 0%, 50% 최대부하까지, 엔진속도를 700rpm에서 1900rpm까지로 하였다. 실험 결과 바이오디젤 첨가율의 증가에 따라 최대토크는 감소하였고, 질소산화물은 약간 증가하였지만 스모크와 일산화탄소는 감소하였다. 이러한 경향은 부하가 증가함에 따라 크게 나타났다.

디젤 주기관의 시운전 결과 및 성능 변화 추이에 관한 연구 (A Study on the Trial Results and Performance Trend of Diesel Main Engine)

  • 조권회;이동훈;손민수
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.73-74
    • /
    • 2005
  • Shipping company and operators have to manage well to keep shipping schedules without problems in main engine. Specially operators have to operate main engine within the limit of operation point, and adjust related parameters to be operated safely and continuously. Also operators have ability to analyze fouling condition of hull through comparing data gotten from P-V curve and performance results of new building ships in trial with service ships. In this study, not only compared main engine performance results in shop trial and sea trial, but also investigated performance trend in accordance with the time elapsed for the service ship's diesel engine. They were confirmed as follows. First, shop trial load is higher than sea trial load but ship's speed is satisfied with owner's contract speed. Second as time goes by, load of service ship increases steadily and other parameters related with main engine shows variable change depend on main engine load increasing.

  • PDF