• Title/Summary/Keyword: marine biofilm

Search Result 32, Processing Time 0.031 seconds

Isolation of Protease-Producing Arctic Marine Bacteria

  • Lee, Yoo-Kyung;Sung, Ki-Cheol;Yim, Joung-Han;Park, Kyu-Jin;Chung, Ho-Sung;Lee, Hong-Kum
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.215-219
    • /
    • 2005
  • We isolated and identified three protease-producing bacteria that had inhabited the region around the Korean Arctic Research Station Dasan located at Ny-Alesund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. Biofilms were collected from the surface of a floating pier and from dead brown algae in a tide pool near the seashore. The biofilm samples were transported to the Korea Polar Research Institute (KOPRI) under frozen conditions, diluted in sterilized seawater, and cultured on Zobell agar plates with 1% skim milk at $10^{\circ}C$. Three clear zone forming colonies were selected as protease-producing bacteria. Phylogenetic analysis based on 16S rDNA sequences showed that these three stains shared high sequence similarities with Pseudoalteromonas elyakovii, Exiguobacterium oxidotofewm Pseudomonas jessenii, respectively. We expect these Arctic bacteria may be used to develop new varieties of protease that are active at low temperatures.

Metaproteomics in Microbial Ecology (메타프로테오믹스의 미생물생태학적 응용)

  • Kim, Jong-Shik;Woo, Jung-Hee;Kim, Jun-Tae;Park, Nyun-Ho;Kim, Choong-Gon
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • New technologies are providing unprecedented knowledge into microbial community structure and functions. Even though nucleic acid based approaches provide a lot of information, metaproteomics could provide a high-resolution representation of genotypic and phenotypic traits of distinct microbial communities. Analyzing the metagenome from different microbial ecosystems, metaproteomics has been applied to seawater, human guts, activated sludge, acid mine drainage biofilm, and soil. Although these studies employed different approaches, they elucidated that metaproteomics could provide a link among microbial community structure, function, physiology, interaction, ecology, and evolution. These approaches are reviewed here to help gain insights into the function of microbial community in ecosystems.

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.233-239
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water. The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg O$_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg O$_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.

  • PDF

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.155-159
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water, The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg$O_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg $O_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.

Biofilm Formation and Indole-3-Acetic Acid Production by Two Rhizospheric Unicellular Cyanobacteria

  • Ahmed, Mehboob;Stal, Lucas J.;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1015-1025
    • /
    • 2014
  • Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants.

Yellow-colored mats in Jeju Island lava tubes

  • Kim, Jong-Shik;Kim, Dae-Shin;Lee, Keun Chul;Kim, Yong-Hwan;Ahn, Ung-San;Lee, Mi-Kyung;Lee, Jung-Sook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1338-1348
    • /
    • 2019
  • The Geomunoreum Lava Tube System, declared as a UNESCO World Heritage Site, has a unique natural ecosystem. The information available about this ecosystem, which contains lava caves with secondary carbonate speleothems, is sparse. Hence, extensive research is warranted for establishing a conservation standard. We commenced microbial research on the system and have been studying the microorganisms coating the lava tube wall to acquire fundamental information for understanding the lava cave ecology of Jeju Island. Samples were collected from yellow-colored walls in six caves that are part of the system-the Bengdwi, Utsanjeon, Bukoreum, Manjang, Gimnyeong, and Yongcheon caves. This study focused on yellow walls as it is the most easily distinguished color. According to previous studies, the color of cave walls is attributed to microorganisms or their components. To determine whether the yellow mats from the Jeju lava tube walls are caused by microorganisms, we examined samples at the microscopic scale, by staining mats and analyzing bacterial isolates from glitter particles. As a result, we found that the yellow walls of lava tubes are comprised of microbial mats.

Burkholderia tropica as a Potential Microalgal Growth-Promoting Bacterium in the Biosorption of Mercury from Aqueous Solutions

  • Zarate, Ana;Florez, July;Angulo, Edgardo;Varela-Prieto, Lourdes;Infante, Cherlys;Barrios, Fredy;Barraza, Beatriz;Gallardo, D.I;Valdes, Jorge
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1138-1149
    • /
    • 2017
  • The use of microalgal biomass is an interesting technology for the removal of heavy metals from aqueous solutions owing to its high metal-binding capacity, but the interactions with bacteria as a strategy for the removal of toxic metals have been poorly studied. The goal of the current research was to investigate the potential of Burkholderia tropica co-immobilized with Chlorella sp. in polyurethane discs for the biosorption of Hg(II) from aqueous solutions and to evaluate the influence of different Hg(II) concentrations (0.041, 1.0, and 10 mg/l) and their exposure to different contact times corresponding to intervals of 1, 2, 4, 8, 16, and 32 h. As expected, microalgal bacterial biomass adhered and grew to form a biofilm on the support. The biosorption data followed pseudo-second-order kinetics, and the adsorption equilibrium was well described by either Langmuir or Freundlich adsorption isotherm, reaching equilibrium from 1 h. In both bacterial and microalgal immobilization systems in the co-immobilization of Chlorella sp. and B. tropica to different concentrations of Hg(II), the kinetics of biosorption of Hg(II) was significantly higher before 60 min of contact time. The highest percentage of biosorption of Hg(II) achieved in the co-immobilization system was 95% at pH 6.4, at 3.6 g of biosorbent, $30{\pm}1^{\circ}C$, and a mercury concentration of 1 mg/l before 60 min of contact time. This study showed that co-immobilization with B. tropica has synergistic effects on biosorption of Hg(II) ions and merits consideration in the design of future strategies for the removal of toxic metals.

Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana

  • Parasuraman, Paramanantham;Devadatha, B;Sarma, V. Venkateswara;Ranganathan, Sampathkumar;Ampasala, Dinakara Rao;Reddy, Dhanasekhar;Kumavath, Ranjith;Kim, In-Won;Patel, Sanjay K.S.;Kalia, Vipin Chandra;Lee, Jung-Kul;Siddhardha, Busi
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.571-582
    • /
    • 2020
  • Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The minimum inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 ㎍/ml. Sub-MIC concentrations (250 and 500 ㎍/ml) of fungal extract reduced QS-regulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, respectively. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico analysis revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their respective natural signaling molecules. Cyclo(-Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 ㎍/ml, respectively. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 ㎍/ml) and 4-HPA (62.5 ㎍/ml), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.

Studies on a Toxin/Antitoxin System in Streptococcus iniae (어류병원균 Streptococcus iniae의 toxin/antitoxin system에 대한 연구)

  • Yoon, Seongyong;Kim, Yeon Ha;Jeun, Moonjung;Seong, Minji;Yoo, Ah Young;Lee, Donghee;Moon, Ki Hwan;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2019
  • Streptococcus iniae is a typical fish pathogen causing streptococcosis and it can also cause zoonotic infectious diseases. We studied S. iniae FP5228 isolated from infected olive flounder in Wando, Korea. In a study to find virulence factors in FP5228, we found that the number of live bacteria decreased dramatically in culture medium containing S. iniae FP5228 for more than 24 hr. This phenomenon was hypothesized to be related to Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ genes, components of the Toxin/ Antitoxin (TA) system on the 14 kb plasmid of FP5228. We used a protein overexpression system to identify it. The pBP1140 vector system was constructed to regulate the expression of Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ by IPTG and Arabinose. E. coli/pBP1140 strain grew slowly in early growth under toxin expression condition, and it was confirmed by microscopic observation that the strain became longer. S. iniae CK287, lacking a 14 kb plasmid of S. iniae FP5228 strain, was constructed. CK287 bacterial cells did not show rapid killing during culture, and the ability to produce biofilm was also decreased, and toxicity was weakened in cytotoxicity test and fish test. These results suggest that the TA system is involved in physiological regulation and expression of virulence factors in S. iniae FP5228.

Effectiveness Analysis on the Application of Ultraviolet and Plasma Treatment Devices for Water Sterilization (용수 살균을 위한 자외선과 플라즈마 처리장치 적용에 따른 효과분석)

  • Kim, Young Jae;Park, Jeon Oh;Lee, Haeng Lim
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.86-90
    • /
    • 2019
  • This study aimed to compare the disinfection efficiencies of the ultraviolet and plasma systems, the two systems designed and commercialized to disinfect water in aquaculture, by putting each in a 100 ℓ water tank and concentrating 1.0 ℓ of treated water to check the changes in the number of bacteria in the samples. Each system was operated for 6 hours to culture the typical seawater bacteria in the Marine agar, Thiosulfate citrate bile salts sucrose agar and Salmonella Shigella agar media, respectively, to check the number of bacteria in the media, and the changes in the number of Edwardsiella piscicida in the treated water were checked after the artificial inoculation of E. piscicida in the disinfected seawater. As a result, the two disinfection systems showed the almost similar levels of bacterial reduction efficiency between 99.5% and 99.9%. However, the result of this study showed that, with 100 ℓ of water treated for the same length of time using the two systems, the plasma system turned out to disinfect bacteria in a shorter period of time than the UV system. However, as the changes in the number of bacteria were checked for a short length of time (6 hours) in this study, it was judged that, considering the actual aquaculture environment in which the quality of water significantly changes with feed residues, excretions and coastal contamination, etc., and a lot of biofilms and organic matter exist, the plasma system would be more efficient than the UV system as the former is capable of continuously maintaining a certain level of efficiency than the latter that is limited in terms of efficiency depending on the level of turbidity and the existence of organic matter.