• Title/Summary/Keyword: marine Achromobacter sp.

Search Result 6, Processing Time 0.021 seconds

Production of Bioemulsifier from a Marine Bacterium Achromobacter sp. M-1220 (해양세균 Achromobacter sp. M-1220 균주를 이용한 생물유화제 물질의 생산)

  • 박중연;홍용기
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.252-256
    • /
    • 1989
  • A marine bacterium which was isolated from the enrichment culture for the emulsification of Bunker-C oil produced a bioemulsifier potently. The strain identified as an Achromobacter sp. M-1220. The bioemulsifier was produced during mid-logarithmic phase in hexadecane oil medium at 18$^{\circ}C$. It appeared to be a cationic peptidolipid substance and showed an active stabilizing effect on the emulsion of crude oils and a few vegetable oils.

  • PDF

Emulsification of Bunker-C Oil by a Marine Bacterium Achromobacter sp. M-1220 (해양세균 Achromobacter sp. M-1220균주에 의한 Bunker-C 유의 유화)

  • 박중연;박인식;서근학;홍용기
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.384-388
    • /
    • 1988
  • A marine bacterium Achromobacter sp. M-1220 was isolated from enrichment culture for emulsification of Bunker-C oil. The bacterium can emulsify approximately 7.5g of Bunker-C oil per liter in sen water medium within 1 drys at 18$^{\circ}C$ and multiply from 8$\times$10$^5$ cells to 9$\times$10$^9$ cells per mi. Optimum pH and salt concentration were pH 7.5 and 3% for the emulsification of Bunker-C oil. Emulsification takes place actively in both high sulfur-containing Bunker-C oil and high sulfur-con-taming crude oil. The amount of emulsification depends on the exogenous addition of nitrogen and phosphate sources. The bacterium can also utilize n-hexndecane, n-paraffin me benzene among the petroleum compounds as a sole carbon source.

  • PDF

Phylogenetic Analysis of Culturable Arctic Bacteria

  • Lee Yoo Kyung;Kim Hyo Won;Kang Sung-Ho;Lee Hong Kum
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.26-33
    • /
    • 2003
  • We isolated and identifed culturable Arctic bacteria that have inhabited around Korean Arctic Research Station Dasan located at Ny-Alsund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. The pure colonies were inoculated into nutrient liquid media, genomic DNA was extracted, and phylogenetic analysis was performed on the basis of 16S rDNA sequences. Out of total 227 strains, 198 strains were overlapped or unidentified, and 43 bacteria were finally identified: 31 strains belonged to Pseudomonas, 7 strains Arthrobacter, two Flavobacterium sp., an Achromobacter sp., a Pedobacter sp., and a Psychrobacter sp. For isolation of diverse bacteria, we need more effective transport method than 3M petri-films, which were used for convenience of transportation that was restricted by volume. We also need to use other culture media than nutrient media. We expect these Arctic bacteria can be used for screening to develop new antibiotics or industrial enzymes that are active at low temperature.

  • PDF

STUDIES ON MARINE BACTERIA IN KOREAN COASTAL WATERS 1. On the distribution of marine bacteria in the Coast of Chung-Mu (한국연안의 해양미생물의 분포에 관한 연구 1. 충무연안의 분포에 관하여)

  • LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 1977
  • The monthly distribution of marine bacteria in the coastal waters of Chung-Mu was investigated from April, 1976 to March, 1977. The aim of this study was to obtain basic data for the prevention of food poisoning and for the efficient aquaculture of the area. Samples of sea water, mud, fish and shell fish were taken every month. The results are as follows: 1. One thousand four hundred and twenty-six strains were isolated from 732 samples of sea water, mud, fish and shell fish. They were 450 strains of Pseudomonas fluorescens, 422 strains of Achromobacter liquefacience, 72 strains of Vibrio parahaemolyticus, 234 strain of Vibrio alginolyticus, and 248 strains of Proteus vulgaris. 2. V. parahaemolyticus occupied $9.84\%$ of the total samples and $52\%$ of them were found in the sea water and mud. 3. The muds sampled districtly beneath the aquaculture raft contained much gas. They seemed to originate from the deposition of excretion of shell fish. The fatness of the shell fish was low where the gas was abundant. 4. It was .found that the shell fish with low fatness contained much Vibrio sp. 5. Regional distribution shows that marine bacteria were abundant in the order of station 10, 9, 8, 11, 1. The area around station 9 was polluted by reclamation of the area, and station 8 showed the influence of the excrement treat tank located nearly.

  • PDF

Effects of environmental seawater on the infectivities of HRV(rhabdovirus olivaceus), FBV(flounder birnavirus) and RVS(retrovirus of salmonid) (HRV(Rhabdovirus olivaceus), FBV(flounder birnavirus) 및 RVS(retrovirus of salmonid)의 감염가에 미치는 해수의 영향)

  • Oh, Myung-Joo;Choi, Tae-Jin;Sim, Doo-Saing;Park, Myoung-Ae;Sohn, Sang-Gyu;Kim, Jin-Woo;Kim, Young-Jin
    • Journal of fish pathology
    • /
    • v.10 no.2
    • /
    • pp.165-176
    • /
    • 1997
  • Water samples collected from marine fish culture system in Korea were compared for their capability to reduce the infectivity titers of HRV (rhabdovirus olivaceus), FBV(flounder birnavirus) and RVS(retrovirus of salmonid). In addition, interaction between viruses and microorganisms present in the rearing seawater was examined. The titer of HRV and RVS were reduced at $15^{\circ}C$ to less than detectable limits within 3 to 5 days using untreated samples of seawater. No reduction of infectivity was noted in bacteria-free water treated by filtration or autoclaving. Bacteria (Pseudomonas and Vibrio sp.) isolated from the water collected from a flounder culture system showed the inactivation activity of HRV.

  • PDF

THE TASTE COMPOUNDS FERMENTED ACETES CHINENSIS (새우젓의 정미성분에 관한 연구)

  • CHUNG Seung-Yong;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-110
    • /
    • 1976
  • In Korea fermented fish and shellfish have traditionally been favored and consumed as seasonings or further processed for fish sauce. Three major items in production quantity among more than thirty kinds which are presently available in the market are fermented anchovy, oyster and small shrimp. They are usually used as a seasoning mixture of Kimchi in order to provide a distinctive flavor. Fermented small shrimp, Acetes chinensis is most widely and largely used ana occupies an important position in food industry of this country. But no study on its taste compounds has been reported. This study was attempted to establish the basic data for evaluating taste compounds of fermented small shrimp. The changes of such compounds during fermentation as free amino acids, nucleotides and their related compounds, TMAO, TMA, and betaine were analysed. In addition, change in microflora during the fermentation under the halophilic circumstance was also investigated. The samples were prepared with three different salt contents of 20, 30 and $40\%$ to obtain the proper degree of fermentation at a controlled tempeature of $20{\pm}2^{\circ}C$. The results are summarized as follows: Volatile basic nitrogen increased rapidly until 108 days of fermentation and afterwards it tended to increase slowly. Amino nitrogen also increased rapidly until 43 days of fermentation and then increased slowly. Extract nitrogen increased and marked the maximum value at 72 day fermentation and then decreased slowly. ADP, AMP and IMP tended to degrade rapidly while hypoxanthine increased remarkably at 27 day fermentation but slightly decreased at 72 day fermentation. It is presumed that the characteristic flavor of fermented small shrimp might be attributed to the relatively higher content of hypoxanthine. In the free amino acid composition of fresh small shrimp abundant amino acids were proline, arginine, alanine, glycine, lysine, glutamic acid, leucine, valine and threonine in order. Such amino acids like serine, methionine, isoleucine, phenylalanine, aspartic acid, tyrosine and histidine were poor. In small shrimp extract, proline, arginine, alanine, glycine, lysine and glutamic acid were dominant holding $18.5\%,\;14.6\%,\;10.8\%,\;8.7\%,\;8.1\%\;and\;7.7\%$ of total free amino acids respectively. The total free amino acid nitrogen in fresh small shrimp was $63.9\%$ of its extract nitrogen. The change of free amino acid composition in the extract of small shrimp during fermentation was not observed. Lysine, alanine glutamic acid, proline, glycine and leucine were abundant in both fresh sample and fermented products. The increase of total free amino acids during 72 day fermentation reached approximately more than 2 times as compared with that of fresh sample and then decreased slowly. Fermented small shrimp with $40\%$ of salt was too salty to be commercial quality as the results of organoleptic test showed. It is found that 72 day fermentation with $20\%\;and\;30\%$ of salt gave the most favorable flavor. It is convinced that the characteristic flavor of fermented small shrimp was also attributed to such amino acids as lysine, proline, alanine, glycine and serine known as sweet compounds, as glutamic acid with meaty taste, and as leucine known as bitter taste. The amount of betaine increased during fermentation and reached the maximum at 72 day fermentation and then decreased slowly TMA increased while TMAO decreased during fermentation. The amount of TMAO nitrogen in fermented small shrimp was $200mg\%$ on moisture and salt free base. Betaine and TMAO known as sweet compounds were abundant in fermented small shrimp. It is supposed that these compounds could also play a role as important taste compounds of fermented small shrimp. At the initial stage of fermentation, Achromobacter, Pseudomonas, Micrococcus denitrificans which belong to marine bacteria were isolated. After 40 day fermentation, they disappeared rapidly while Halabacterium, Pediococcus, Sarcian, Micrococcus morrhuae and the yeasts such as Saccharomyces sp. and Torulopsis sp. dominated. It is concluded that the most important taste compounds of fermented small shrimp were amino acids such as lysine, proline, alanine, glycine, serine, glutamic acid, and leucine, betaine, TMAO and hypoxanthine.

  • PDF