• Title/Summary/Keyword: mapping class groups

Search Result 25, Processing Time 0.023 seconds

RATIONAL HOMOLOGY DISK SMOOTHINGS AND LEFSCHETZ FIBRATIONS

  • Hakho Choi
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.227-253
    • /
    • 2023
  • In this article, we generalize the results discussed in [6] by introducing a genus to generic fibers of Lefschetz fibrations. That is, we give families of relations in the mapping class groups of genus-1 surfaces with boundaries that represent rational homology disk smoothings of weighted homogeneous surface singularities whose resolution graphs are 3-legged with a bad central vertex.

The Effect of an Instruction Using Analog Systematically in Middle School Science Class (중학교 과학 수업에서 비유물을 체계적으로 사용한 수업의 효과)

  • Noh, Tae-Hee;Kwon, Hyeok-Soon;Lee, Seon-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.3
    • /
    • pp.323-332
    • /
    • 1997
  • In order to use analog more systematically in science class, an instructional model was designed on the basis of analogical reasoning processes (encoding, inference, mapping, application, and response) in the Sternberg's component process theory. The model has five phases (introducing target context, cue retrieval of analog context, mapping similarity and drawing target concept, application, and elaboration), and the instructional effects of using the model upon students' comprehension of science concepts and motivation level of learning were investigated. The treatment and control groups (1 class each) were selected from 8th-grade classes and taught about chemical change and chemical reaction for the period of 10 class hours. The treatment group was taught with the materials based on the model, while the control group was taught in traditional instruction without using analog. Before the instructions, modified versions of the Patterns of Adaptive Learning Survey and the Group Assessment of Logical Thinking were administered, and their scores were used as covariates for students' conceptions and motivational level of learning, respectively. Analogical reasoning ability test was also administered, and its score was used as a blocking variable. After the instructions, students' conceptions were measured by a researcher-made science conception test, and their motivational level of learning was measured by a modified version of the Instructional Materials Motivation Scale. The results indicated that the adjusted mean score of the conception test for the treatment group was significantly higher than that of the control group at .01 level of significance. No significant interaction between the instruction and the analogical reasoning ability was found. Although the motivational level of learning for the treatment group was higher than that for the control group, the difference was found to be statistically insignificant. Educational implications are discussed.

  • PDF

Mapping Heterogenous Ontologies for the HLP Applications - Sejong Semantic Classes and KorLexNoun 1.5 - (인간언어공학에의 활용을 위한 이종 개념체계 간 사상 - 세종의미부류와 KorLexNoun 1.5 -)

  • Bae, Sun-Mee;Im, Kyoung-Up;Yoon, Ae-Sun
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.95-126
    • /
    • 2010
  • This study proposes a bottom-up and inductive manual mapping methodology for integrating two heterogenous fine-grained ontologies which were built by a top-down and deductive methodology, namely the Sejong semantic classes (SJSC) and the upper nodes in KorLexNoun 1.5 (KLN), for HLP applications. It also discusses various problematics in the mapping processes of two language resources caused by their heterogeneity and proposes the solutions. The mapping methodology of heterogeneous fine-grained ontologies uses terminal nodes of SJSC and Least Upper Bounds (LUB) of KLN as basic mapping units. Mapping procedures are as follows: first, the mapping candidate groups are decided by the lexfollocorrelation between the synsets of KLN and the noun senses of Sejong Noun Dfotionaeci(SJND) which are classified according to SJSC. Secondly, the meanings of the candidate groups are precisely disambiguated by linguistic information provided by the two ontologies, i.e. the hierarchicllostructures, the definitions, and the exae les. Thirdly, the level of LUB is determined by applying the appropriate predicates and definitions of SJSC to the upper-lower and sister nodes of the candidate LUB. Fourthly, the mapping possibility ic inthe terminal node of SJSC is judged by che aring hierarchicllorelations of the two ontologies. Finally, the ituorrect synsets of KLN and terminologiollocandidate groups are excluded in the mapping. This study positively uses various language information described in each ontology for establishing the mapping criteria, and it is indeed the advantage of the fine-grained manual mapping. The result using the proposed methodology shows that 6,487 LUBs are mapped with 474 terminal and non-terminal nodes of SJSC, excluding the multiple mapped nodes, and that 88,255 nodes of KLN are mapped including all lower-level nodes of the mapped LUBs. The total mapping coverage is 97.91% of KLN synsets. This result can be applied in many elaborate syntactic and semantic analyses for Korean language processing.

  • PDF

Integrating Concept Mapping and the Learning Cycle to Teach Genetics and Reproduction to High School Students (고등학생들의 생물학습에서 개념도와 순환학습을 통합한 수업의 효과)

  • Chung, Young-Lan;Lee, Eun-Pa
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.6
    • /
    • pp.617-626
    • /
    • 2003
  • Although many studies have investigated the effectiveness of concept mapping and the learning cycle, in Korea none have explored the effectiveness of concept mapping and the learning cycle combined. This study explored the effectiveness of concept mapping, the learning cycle, and a combination of concept mapping/learning cycle(CL) in high school biology class. Students' science achievement, the science related attitudes and scientific inquiry ability was measured. The results indicated that concept mapping, the learning cycle, and CL treatment were significantly different from the traditional one in science achievement(p< .05). However, the three treatments were not significantly different from each other. No significant difference exists among different learnings in high and average-ability students. But, concept mapping was the most effective in low-ability students. For the students' scientific inquiry ability, CL and learning cycle were more effective than concept mapping and traditional learning. No significant difference exists among different learnings in high-ability students. CL and learning cycle were more effective than concept mapping and traditional learning in average and low-ability students. For the students' science related attitudes, concept mapping, the learning cycle, and CL were more effective than the traditional learning. But, there was no significant difference among these three groups.

The Effects of Analogy-Generating in Small Group on Saturated Solution in Elementary Science-Gifted Education (초등 과학영재교육에서 포화용액 개념에 대한 소집단 비유 만들기의 효과)

  • Yoon, Jin-A;Kang, Hun-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.509-518
    • /
    • 2011
  • In this study, we investigated the effects of analogy-generating in small group in elementary science-gifted education upon the types and the mapping errors of student-generated analogies, and the perceptions of the instruction. Fifth graders (N=37) at two science-gifted classes in two elementary schools were selected and assigned to individualistic analogygenerating (IA, n=19) and pair analogy-generating (PA, n=18) groups. After the students of each group performed the experiment and were taught about 'saturated solution' concept in the first class, they administered the test on the self-generating analogies on the concept in the second class. The students in the PA group also administered the test on perceptions of analogy-generating in small group and some of them were interviewed deeply. The results revealed that the students in the PA group made more verbal/pictorial, structural/functional, enriched, and higher systematic analogies than those in the IA group. However, there were little difference between the two groups in the subcategories of artificiality (artificial and everyday) and abstraction (abstract and concrete). The students in the PA group fewer mapping errors than those in the IA group. Many students in PA group perceived the analogy-generating in small group positively upon various cognitive and motivational aspects. However, they also pointed a few disadvantages of the activity. Educational implications of these findings are discussed.

Report of Radiologic Education Effect Case in First-year Students at University Using Concept Map (개념 지도를 이용한 저학년 대상의 방사선학 교육 효과 사례 보고)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.491-496
    • /
    • 2019
  • The purpose of this study was to apply a concept map to the first-year students of radiologic science and report its effects. The concept map is a visual representation of a major concept and related linking statements. Concept maps are useful tools for students to construct and organize content they have learned. The subjects of this study were first-year grade and at one university in Chungbuk, Korea. They were divided into active and passive participant groups in the class. And they were evaluated the educational effects such as satisfaction, fidelity, learning achievement, and interest before and after using the concept map. As a result, the passive participant group significantly increased the educational effect except for satisfaction, and the active participant group significantly increased the educational effect in all variables (p<0.05). These results showed that concept mapping, which induces first-year grade students to participate in class, could be helpful in radiologic education. It is expected to be used as basic data in various radiologic educational methodology studies in the future.

The Effects of Concept Mapping Strategy in the Undergraduate General Chemistry Course (대학 일반 화학 수업에서 개념도 활용 전략의 효과)

  • Koh, Han-Joong;Doh, Eun-Jeong;Kang, Suk-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.186-192
    • /
    • 2007
  • In this study, the effects of concept mapping on the preservice elementary teachers' achievement, conceptual understanding, anxiety toward science, and science teaching efficacy belief were investigated in the undergraduate general chemistry course. The aptitude-treatment interaction (ATI) between preservice teachers' learning approach and concept mapping strategy was also investigated. Sixty-nine freshmen from a university of education were assigned to a control group and a treatment group. Tests regarding students' learning approach, anxiety toward science, and science teaching efficacy belief were administered as pretests. Treatment lasted for 9 weeks. In every class, students in the treatment group constructed concept maps, while those in the control group solved the problems of the textbook after the lecture. After the instructions, tests of achievement, conceptual understanding, anxiety toward science, and science teaching efficacy beliefs were administered. The results indicated that students in the treatment group significantly outperformed those of the control group in the achievement test. In the conceptual understanding and the science teaching efficacy beliefs, however, no statistically significant differences were found between two groups. Students of the treatment group showed significantly higher anxiety than their counterpart in the test of anxiety toward science. No aptitudetreatment interaction between students' learning approach and the concept mapping strategy was found.

An Analysis of Verbal Interaction and Analogy-generating Pattern of Science-gifted Students in Learning Using Analogy-generating Strategy (비유 생성 전략을 활용한 수업에서 과학영재의 언어적 상호작용과 비유 생성 패턴 분석)

  • Kim, Youjung;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.6
    • /
    • pp.1063-1074
    • /
    • 2015
  • In this study, we developed an analogy-generating strategy and applied this to a 7th grade science-gifted class. The types of analogies they generated, verbal interactions and analogy-generating patterns, and perceptions of five groups on the analogy-generating strategy were examined. The analyses of the results revealed that there was a higher proportion of the elaborated analogies in terms of quality generated by science-gifted students individually in the analogy-generating strategy than in general analogy-generating activity. After having small group activities, most small groups generated the elaborated analogies. The frequencies and percentages of verbal interactions of each sub-stage were found to be slightly different. Analogy-generating patterns in small groups were categorized into three types; selecting in-depth source, selecting inclusive source, and selecting surficial source. The elaborating patterns of mapping between a target concept and analogies were different among the types. Science-gifted students positively perceived in terms of its values and attitudes toward the analogy-generating strategy, and they responded that the analogy-generating strategy was helpful in generating more elaborated analogies and fostering creative thinking. Therefore the analogy-generating strategy is expected to generate positive impact on the creativity of science-gifted students.

Accuracy of one-step automated orthodontic diagnosis model using a convolutional neural network and lateral cephalogram images with different qualities obtained from nationwide multi-hospitals

  • Yim, Sunjin;Kim, Sungchul;Kim, Inhwan;Park, Jae-Woo;Cho, Jin-Hyoung;Hong, Mihee;Kang, Kyung-Hwa;Kim, Minji;Kim, Su-Jung;Kim, Yoon-Ji;Kim, Young Ho;Lim, Sung-Hoon;Sung, Sang Jin;Kim, Namkug;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.52 no.1
    • /
    • pp.3-19
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the accuracy of one-step automated orthodontic diagnosis of skeletodental discrepancies using a convolutional neural network (CNN) and lateral cephalogram images with different qualities from nationwide multi-hospitals. Methods: Among 2,174 lateral cephalograms, 1,993 cephalograms from two hospitals were used for training and internal test sets and 181 cephalograms from eight other hospitals were used for an external test set. They were divided into three classification groups according to anteroposterior skeletal discrepancies (Class I, II, and III), vertical skeletal discrepancies (normodivergent, hypodivergent, and hyperdivergent patterns), and vertical dental discrepancies (normal overbite, deep bite, and open bite) as a gold standard. Pre-trained DenseNet-169 was used as a CNN classifier model. Diagnostic performance was evaluated by receiver operating characteristic (ROC) analysis, t-stochastic neighbor embedding (t-SNE), and gradient-weighted class activation mapping (Grad-CAM). Results: In the ROC analysis, the mean area under the curve and the mean accuracy of all classifications were high with both internal and external test sets (all, > 0.89 and > 0.80). In the t-SNE analysis, our model succeeded in creating good separation between three classification groups. Grad-CAM figures showed differences in the location and size of the focus areas between three classification groups in each diagnosis. Conclusions: Since the accuracy of our model was validated with both internal and external test sets, it shows the possible usefulness of a one-step automated orthodontic diagnosis tool using a CNN model. However, it still needs technical improvement in terms of classifying vertical dental discrepancies.

The Effects of Instruction Using Mind Map in Middle School Science Class (중학교 과학수업에서 학생들의 뇌기능 분화에 따른 마인드 맵을 활용한 수업의 효과)

  • Chung, Young-Lan;Lee, Joo-Youn
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.5
    • /
    • pp.805-813
    • /
    • 2004
  • Our educational system clearly places much greater value on left hemisphere learning. Students who process information in other ways are at a serious disadvantage and may not be learning efficiently. Since mind mapping emphasizing visual and spatial language, it helps students to use the whole brain and promotes more effective comprehension. The purpose of this research was to determine the effects of the instruction using mind map on the science achievement of students. A pretest-posttest control group design was employed. Subjects were 153 male and female, first grade students in a middle school. A control group of 83 was instructed with a traditional teaching method, and an experimental group of 70 was instructed by using a mind mapping strategy. Two groups were treated for 50 hours during 17 weeks. Tolerance's 'Style Of Learning And Thinking(SOLAT)' was used to assess students' lateralization preferences. A 30-item multiple choice posttest was used to assess students' achievement. To analyze the data, we used an analysis of covariance(ANCOVA) and i-tests. It was found that 21.6% of students was left brain dominant, 31.4%, right brain dominant and 47.1 % was integrated style. There was no gender difference in hemispheric dominance. Significant differences existed between the test scores when they were taught by using a mind map. Mind mapping turned out to be a valuable learning technique for the right brain students, helping them to achieve the same level of subject mastery as left brain students. There was a significant difference between males and females in relation to mind map application. Female scored significantly higher than males.