• Title/Summary/Keyword: map models

Search Result 723, Processing Time 0.031 seconds

Flood Runoff Simulation Using GIS-Grid Based K-DRUM for Yongdam-Dam Watershed (GIS격자기반 K-DRUM을 활용한 용담댐유역 홍수유출모의)

  • Park, Jin Hyeog;Hur, Young Teck;Ryoo, Kyong Sik;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.145-151
    • /
    • 2009
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. This research is to evaluate the feasibility of GIS based distributed model using radar rainfall which can express temporal and spatial distribution in actual dam watershed during flood runoff period. K-DRUM (K-water hydrologic & hydaulic Distributed flood RUnoff Model) which was developed to calculate flood discharge connected to radar rainfall based on long-term runoff model developed by Kyoto- University DPRI (Disaster Prevention Research Institute), and Yondam-Dam watershed ($930km^2$) was applied as study site. Distributed rainfall according to grid resolution was generated by using preprocess program of radar rainfall, from JIN radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of distributed model (K-DRUM). Results of this research can provide a base for building of real-time short-term rainfall runoff forecast system according to flash flood in near future.

A study on the Pattern Recognition of the EMG signals using Neural Network and Probabilistic modal for the two dimensional Motions described by External Coordinate (신경회로망과 확률모델을 이용한 2차원운동의 외부좌표에 대한 EMG신호의 패턴인식에 관한 연구)

  • Jang, Young-Gun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.65-70
    • /
    • 1991
  • A hybrid model which uses a probabilistic model and a MLP(multi layer perceptron) model for pattern recognition of EMG(electromyogram) signals is proposed in this paper. MLP model has problems which do not guarantee global minima of error due to learning method and have different approximation grade to bayesian probabilities due to different amounts and quality of training data, the number of hidden layers and hidden nodes, etc. Especially in the case of new test data which exclude design samples, the latter problem produces quite different results. The error probability of probabilistic model is closely related to the estimation error of the parameters used in the model and fidelity of assumtion. Generally, it is impossible to introduce the bayesian classifier to the probabilistic model of EMG signals because of unknown priori probabilities and is estimated by MLE(maximum likelihood estimate). In this paper we propose the method which get the MAP(maximum a posteriori probability) in the probabilistic model by estimating the priori probability distribution which minimize the error probability using the MLP. This method minimize the error probability of the probabilistic model as long as the realization of the MLP is optimal and approximate the minimum of error probability of each class of both models selectively. Alocating the reference coordinate of EMG signal to the outside of the body make it easy to suit to the applications which it is difficult to define and seperate using internal body coordinate. Simulation results show the benefit of the proposed model compared to use the MLP and the probabilistic model seperately.

  • PDF

A Study on the Development of Profit Model for Sustainability of Consulting Research Institutes (컨설팅 연구기관의 지속가능을 위한 수익모델 개발에 관한 연구)

  • Kim, Young Jin;Cha, Woo Chang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • Among the government-sponsored projects supported by Ministry of SMEs and Startups(MSS), the financial support of the Consulting Research Institutes of our university is scheduled to be ended this year. In this regard, this study is to develop a profit model for R&D center of Consulting Research Institute that can cultivate the financial independence of R&D center of Consulting Research Institutes and foster technology convergence consulting manpower to strengthen the competitiveness of SMEs in preparation for the Fourth Industrial Revolution. The profit model were derived from the current status of consulting industry and similar organizations, the current status of consulting graduate R&D centers, case studies of other universities, and focus group interviews. In order to select three high profit models and commercialize them, BMC (Biz Model Canvas) was used and business feasibility was examined. Therefore, three profit model of R&D center of Consulting Research Institute are: First, SCB (SME's Consulting Business: Total Solution Provider for SMEs through Technology Convergence Consulting), Second, SNB (SME's Network Business: Experts connection in Consulting Graduate School for Solving Problems and Problems of SMEs / Industry Consolidation) And third, SM (Sustainable Management: Financial independence through structural improvement of Consulting Research Institute), and the road-map was established. As an implementation plan, the company intends to seek financial independence by developing a profit model for R&D center of Consulting Research Institutes and by establishing business goals and strategies, manpower operation plan, organization, and investment plan for three years.

Preparation of Soil Input Files to a Crop Model Using the Korean Soil Information System (흙토람 데이터베이스를 활용한 작물 모델의 토양입력자료 생성)

  • Yoo, Byoung Hyun;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.174-179
    • /
    • 2017
  • Soil parameters are required inputs to crop models, which estimate crop yield under a given environment condition. The Korean Soil Information System (KSIS), which provides detailed soil profile record of 390 soil series in the HTML (HyperText Markup Language) format, would be useful to prepare soil input files. Korean Soil Information System Processing Tool (KSISPT) was developed to aid generation of soil input data based on the KSIS database. Java was used to implement the tool that consists of a set of modules for parsing the HTML document of the KSIS, storing data required for preparing soil input file, calculating additional soil parameter, and writing soil input file to a local disk. Using the automated soil data preparation tool, about 940 soil input data were created for the DSSAT model and the ORYZA 2000 model, respectively. In combination with soil series distribution map at 30m resolution, spatial analysis of crop yield could be projected under climate change, which would help the development of adaptation strategies.

Developing a Method for Estimating Urban Environmental Impact Using an Integrated Land Use-Transport Model (토지이용-교통 통합 모형을 활용한 도시 환경 영향 예측 방법론 개발)

  • HU, Hyejung;YANG, Choongheon;YOON, Chunjoo;KIM, Insu;SUNG, Junggon
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.294-303
    • /
    • 2015
  • This paper describes a method that can be used for estimating future carbon emissions and environmental effects. To forecast future land use and transportation changes under various low carbon policies, a DELTA and OmniTRANS combination (a land use-transport integrated model) was applied. Appropriate emission estimation methods and dispersion models were selected and applied in the method. It was designed that the estimated emissions from land use and transportation activity as well as the estimated concentrations of air pollutants and comprehensive air quality index (CAI) are presented on a GIS-based map. The prototype was developed for the city of Suwon and the outcome examples were presented in this paper; it demonstrates what kinds of analysis results are presented in this method. It is expected that the developed method will be very useful for decision makers who want to know the effect of environmental policies in cities.

Area-to-Area Poisson Kriging and Spatial Bayesian Analysis in Mapping of Gastric Cancer Incidence in Iran

  • Asmarian, Naeimehossadat;Jafari-Koshki, Tohid;Soleimani, Ali;Ayatollahi, Seyyed Mohammad Taghi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.10
    • /
    • pp.4587-4590
    • /
    • 2016
  • Background: In many countries gastric cancer has the highest incidence among the gastrointestinal cancers and is the second most common cancer in Iran. The aim of this study was to identify and map high risk gastric cancer regions at the county-level in Iran. Methods: In this study we analyzed gastric cancer data for Iran in the years 2003-2010. Area-to-area Poisson kriging and Besag, York and Mollie (BYM) spatial models were applied to smoothing the standardized incidence ratios of gastric cancer for the 373 counties surveyed in this study. The two methods were compared in term of accuracy and precision in identifying high risk regions. Result: The highest smoothed standardized incidence rate (SIR) according to area-to-area Poisson kriging was in Meshkinshahr county in Ardabil province in north-western Iran (2.4,SD=0.05), while the highest smoothed standardized incidence rate (SIR) according to the BYM model was in Ardabil, the capital of that province (2.9,SD=0.09). Conclusion: Both methods of mapping, ATA Poisson kriging and BYM, showed the gastric cancer incidence rate to be highest in north and north-west Iran. However, area-to-area Poisson kriging was more precise than the BYM model and required less smoothing. According to the results obtained, preventive measures and treatment programs should be focused on particular counties of Iran.

Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa;Lim, Jong-Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.591-601
    • /
    • 2007
  • Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.

Comparison of the Internal Fitness of Prostheses Fabricated with Non-Contact Extra-Oral Scanner and Intra-Oral Video Scanner (비접촉식 구강외 스캐너와 비디오방식 구강내 스캐너를 이용하여 제작된 보철물의 내면정확도 비교)

  • Park, Jin-Young;Kim, Ji-Hwan;Jeong, Il-Do;Lee, Gwang-Young;Kim, Won-Soo
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.263-269
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the internal fitness of prostheses fabricated with non-contact extra-oral scanner and those fabricated with intra-oral video scanner, with a comparative accuracy analyses of their precision and trueness. Methods: A polymethyl methacrylate (PMMA) model was fabricated by replicating a master model. The prostheses in the first group were fabricated based on the PMMA model with an intra-oral video scanner (IVS group). Following the fabrication of work models with Type IV Stone that were based on the PMMA model, the prostheses in the second group were fabricated with a non-contact extra-oral scanner (ENB group). The precision and trueness of the prostheses were calculated from comparisons of the three-dimensional images of the internal surfaces of the prostheses and those of the master model. Kruskal-Wallis tests were used to determine the statistical significance, with the level of type 1 error set at 0.05. Results: Trueness (P < 0.009) and precision (P < 0.001) did not differ significantly between the ENB and IVS groups. The IVS group exhibited lower trueness values and larger precision values than the ENB group. Conclusion: Although no significant differences were found in the internal fitness of the prostheses that were fabricated by the two different scanners, the intraoral video scanner-fabricated prostheses had better trueness, whereas the non-contact extra-oral scanner-fabricated prostheses had better precision.

Assessment of Trophic State for Daecheong reservoir Using Landsat TM Imagery Data (Landsat TM 영상자료를 이용한 대청호의 영양상태 평가)

  • Han, E.J.;Kim, K.T.;Jeong, D.H.;Cheon, S.Y.;Kim, S.J.;Yu, S.J.;Hwang, J.Y.;Kim, T.S.;Kim, M.H.
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.1
    • /
    • pp.81-91
    • /
    • 1998
  • The objective of this study was to use remotely sensed data, combined with in situ data, for the assessment of trophic state for Daecheong reservoir. Three Landsat TM(Thematic Mapper) imagery data were processed to portray trophic state conditions. The remotely sensed data and the measured data were obtained on 20 June 1995. Regression models have been developed between the chlorophyll-a concentration and reflectance which was converted to Landsat TM digital data. The regression model was determined based on the correlation coefficient which was higher than 0.7 and was applied to the entire study area to generate a distribution map of chlorophyll-a and trophic state. The equation, providing estimates of chlorophyll-a concentration, represented the year-to-year spatial variation of trophic zones in the reservoir. Satellite remote sensing data derived from Landsat TM had been successfully used for trophic slate mapping in Daecheong reservoir.

  • PDF

Digital Surface Model Generation using Aerial Lidar Data and Ground Control Point Acquisition (항공 라이다 데이터를 이용한 공간해상도별 수치표면모형 제작 및 지상기준점 획득 가능성 분석)

  • Kim Kam-Rae;Hwang Won-Soon;Lee Ho-Nam
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.485-490
    • /
    • 2006
  • In this study, the Digital Surface Models of various spatial resolutions were constructed using LIDAR point data on Digital Photogrammetric System. Then, the accuracies of each DSM's were evaluated using GPS surveying data. And also, observable features were classified and their accuracies were evaluated to verify the availability for Ground Control Point. On Socet Set, Digial Photogrametric System 5 DSM's of which spatial resolutions were 0.15m, 0.5m, 1.0m, 2.5m and 5.0m were constructed and the accuracies of eahc DSM's evaluated in RMSE. The RMSE's of each DSM's were 0.03m, 0.05m, 0.08m, 0.12m and 0,19m. The building feature was observable in DSM's of which spatial resolutions were 0.15m, 0.30m and 0.50m. On the contrary, it could hardly be observed in those of other spatial resolutions. In comparison with the digital map at the scale of 1:1,000, the DSM at the spatial resolution of 0.lim was shifted horizaltally by 0.6m-0.7m of RMSE in each X, Y direction. Therefore, GCP of which horizontal RMSE is better than 1m can be obtained from the DSM at the spatial resolution of 0.15m, of which vertical RMSE is 0.03m-0.19m as the RMSE of DSM. This point cannot be used in aerial triangulation of cartography but can be used for GCP in modeling of satellite image at the moderate resolution.

  • PDF