• Title/Summary/Keyword: map labeling

Search Result 58, Processing Time 0.024 seconds

Performance Comparison of Gas Leak Region Segmentation Based on Transfer Learning (Transfer Learning 기법을 이용한 가스 누출 영역 분할 성능 비교)

  • Marshall, Marshall;Park, Jang-Sik;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.481-489
    • /
    • 2020
  • Safety and security during the handling of hazardous materials is a great concern for anyone in the field. One driving point in the security field is the ability to detect the source of the danger and take action against it as quickly as possible. Via the usage of a fully convolutional network, it is possible to create the label map of an input image, indicating what object is occupying the specific area of the image. This research employs the usage of U-net, which was constructed in biomedical field segmentation to segment cells, instead of the original FCN. One of the challenges that this research faces is the availability of ground truth with precise labeling for the dataset. Testing the network after training resulted in some images where the network pronounces even better detail than the expected label map. With better detailed label map, the network might be able to produce better segmentation is something to be studied in further research.

Object Classification Algorithm with Multi Laser Scanners by Using Fuzzy Method (퍼지 기법을 이용한 다수 레이저스캐너 기반 객체 인식 알고리즘)

  • Lee, Giroung;Chwa, Dongkyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.5
    • /
    • pp.35-49
    • /
    • 2014
  • This paper proposes the on-road object detection and classification algorithm by using a detection system consisting of only laser scanners. Each sensor data acquired by the laser scanner is fused with a grid map and the measurement error and spot spaces are corrected using a labeling method and dilation operation. Fuzzy method which uses the object information (length, width) as input parameters can classify the objects such as a pedestrian, bicycle and vehicle. In this way, the accuracy of the detection system is increased. Through experiments for some scenarios in the real road environment, the performance of the proposed detection and classification system for the actual objects is demonstrated through the comparison with the actual information acquired by GPS-RTK.

Improved Perfusion Contrast and Reliability in MR Perfusion Images Using A Novel Arterial Spin Labeling

  • Jahng, Geon-Ho;Xioaping Zhu;Gerald Matson;Weiner, Michael-W;Norbert Schuff
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.341-344
    • /
    • 2002
  • Neurodegenerative disorders, like Alzheimer's disease, are often accompanied by reduced brain perfusion (cerebral blood flow). Using the intrinsic magnetic properties of water, arterial spin labeling magnetic resonance imaging (ASLMRI) can map brain perfusion without injection of radioactive tracers or contrast agents. However, accuracy in measuring perfusion with ASL-MRI can be limited because of contributions to the signal from stationary spins and because of signal modulations due to transient magnetic field effects. The goal was to optimize ASL-MRI for perfusion measurements in the aging human brain, including brains with Alzheimer's disease. A new ASL-MRI sequence was designed and evaluated on phantom and humans. Image texture analysis was performed to test quantitatively improvements. Compared to other ASL-MRI methods, the newly designed sequence provided improved signal to noise ratio improved signal uniformity across slices, and thus, increased measurement reliability. This new ASL-MRI sequence should therefore provide improved measurements of regional changes of brain perfusion in normal aging and neurodegenerative disorders.

  • PDF

Korean Semantic Role Labeling Using Case Frame Dictionary and Subcategorization (격틀 사전과 하위 범주 정보를 이용한 한국어 의미역 결정)

  • Kim, Wan-Su;Ock, Cheol-Young
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1376-1384
    • /
    • 2016
  • Computers require analytic and processing capability for all possibilities of human expression in order to process sentences like human beings. Linguistic information processing thus forms the initial basis. When analyzing a sentence syntactically, it is necessary to divide the sentence into components, find obligatory arguments focusing on predicates, identify the sentence core, and understand semantic relations between the arguments and predicates. In this study, the method applied a case frame dictionary based on The Korean Standard Dictionary of The National Institute of the Korean Language; in addition, we used a CRF Model that constructed subcategorization of predicates as featured in Korean Lexical Semantic Network (UWordMap) for semantic role labeling. Automatically tagged semantic roles based on the CRF model, which established the information of words, predicates, the case-frame dictionary and hypernyms of words as features, were used. This method demonstrated higher performance in comparison with the existing method, with accuracy rate of 83.13% as compared to 81.2%, respectively.

Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

  • Zhang, Ruiping;Li, Jing;Li, Jianding;Xie, Jun
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.650-655
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and $[Ca^{2+}]_i$ between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

Vision-based Mobile Robot Localization and Mapping using fisheye Lens (어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑)

  • Lee Jong-Shill;Min Hong-Ki;Hong Seung-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.256-262
    • /
    • 2004
  • A key component of an autonomous mobile robot is to localize itself and build a map of the environment simultaneously. In this paper, we propose a vision-based localization and mapping algorithm of mobile robot using fisheye lens. To acquire high-level features with scale invariance, a camera with fisheye lens facing toward to ceiling is attached to the robot. These features are used in mP building and localization. As a preprocessing, input image from fisheye lens is calibrated to remove radial distortion and then labeling and convex hull techniques are used to segment ceiling and wall region for the calibrated image. At the initial map building process, features we calculated for each segmented region and stored in map database. Features are continuously calculated for sequential input images and matched to the map. n some features are not matched, those features are added to the map. This map matching and updating process is continued until map building process is finished, Localization is used in map building process and searching the location of the robot on the map. The calculated features at the position of the robot are matched to the existing map to estimate the real position of the robot, and map building database is updated at the same time. By the proposed method, the elapsed time for map building is within 2 minutes for 50㎡ region, the positioning accuracy is ±13cm and the error about the positioning angle of the robot is ±3 degree for localization.

  • PDF

Mobile Robot Localization and Mapping using Scale-Invariant Features (스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑)

  • Lee, Jong-Shill;Shen, Dong-Fan;Kwon, Oh-Sang;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.7-18
    • /
    • 2005
  • A key component of an autonomous mobile robot is to localize itself accurately and build a map of the environment simultaneously. In this paper, we propose a vision-based mobile robot localization and mapping algorithm using scale-invariant features. A camera with fisheye lens facing toward to ceiling is attached to the robot to acquire high-level features with scale invariance. These features are used in map building and localization process. As pre-processing, input images from fisheye lens are calibrated to remove radial distortion then labeling and convex hull techniques are used to segment ceiling region from wall region. At initial map building process, features are calculated for segmented regions and stored in map database. Features are continuously calculated from sequential input images and matched against existing map until map building process is finished. If features are not matched, they are added to the existing map. Localization is done simultaneously with feature matching at map building process. Localization. is performed when features are matched with existing map and map building database is updated at same time. The proposed method can perform a map building in 2 minutes on $50m^2$ area. The positioning accuracy is ${\pm}13cm$, the average error on robot angle with the positioning is ${\pm}3$ degree.

  • PDF

Land cover classification based on the phonology of Korea using NOAA-AVHRR

  • Kim, Won-Joo;Nam, Ki-Deock;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.439-442
    • /
    • 1999
  • It is important to analyze the seasonal change profiles of land cover type in large scale for establishing preservation strategy and environmental monitoring. Because the NOAA-AVHRR data sets provide global data with high temporal resolution, it is suitable for the land cover classification of the large area. The objectives of this study were to classify land cover of Korea, to investigate the phenological profiles of land cover. The NOAA-AVHRR data from Jan. 1998 to Dec. 1998 were received by Korea Ocean Research & Development Institute(KORDI) and were used for this study. The NDVI data were produced from this data. And monthly maximum value composite data were made for reducing cloud effect and temporal classification. And the data were classified using the method of supervised classification. To label the land cover classes, they were classified again using generalized vegetation map and Landsat-TM classified image. And the profiles of each class was analyzed according to each month. Results of this study can be summarized as follows. First, it was verified that the use of vegetation map and TM classified map was available to obtain the temporal class labeling with NOAA-AVHRR. Second, phenological characteristics of plant communities of Korea using NOAA-AVHRR was identified. Third, NDVI of North Korea is lower on Summer than that of South Korea. And finally, Forest cover is higher than another cover types. Broadleaf forest is highest on may. Outline of covertype profiles was investigated.

  • PDF

Scale-invariant man-made structure extraction algorithm (크기에 강인한 인공물 축출 방법)

  • Son, Kil-Ho;Kim, Sang-Hee;Lee, Yong-Woong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.539-544
    • /
    • 2008
  • 이 논문에서 크기의 변화에 강인한 인공물 축출 알고리듬을 제안한다. 인공물은 크기 및 카메라 센서의 특성에 따라 영상에 다양한 크기로 나타난다. 이 논문은 이러한 크기 변화에 강인한 인공물 축출 방법을 제안한다. 우선 LoG(Laplacian of Gaussian)를 이용하여 최적의 크기를 찾아낸다. 이를 이용하여 우리는 이웃한 정보를 포함할 수 있는 MAP-MRF(Maximum A Posterior-Markov Random Field) 레이블링(Labeling) 방법을 기반으로 인공물 축출을 위한 비용함수를 제안하였다. 인공물은 서로 근처에 존재하기 때문이다. 여기서 정보 비용함수(Data cost function)는 방향 히스토그램(Orientation histogram)을 이용하여 정의하였고, 스무딩 비용함수(Smoothing cost function)는 ICM(Iterated Conditional Modes)을 이용하여 정의한다. 최종적으로 이 알고리듬을 위성영상에 적용하여 알고리듬의 성능을 증명한다.

  • PDF

Active Shape Model-based Object Tracking using Depth Sensor (깊이 센서를 이용한 능동형태모델 기반의 객체 추적 방법)

  • Jung, Hun Jo;Lee, Dong Eun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.141-150
    • /
    • 2013
  • This study proposes technology using Active Shape Model to track the object separating it by depth-sensors. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust object can be extracted. The proposed algorithm removes the horizontal component from the information of the initial depth map and separates the object using the vertical component. In addition, it is also a more efficient morphology, and labeling to perform image correction and object extraction. By applying Active Shape Model to the information of an extracted object, it can track the object more robustly. Active Shape Model has a robust feature-to-object occlusion phenomenon. In comparison to visual camera-based object tracking algorithms, the proposed technology, using the existing depth of the sensor, is more efficient and robust at object tracking. Experimental results, show that the proposed ASM-based algorithm using depth sensor can robustly track objects in real-time.