• Title/Summary/Keyword: manufacturing molds

Search Result 193, Processing Time 0.033 seconds

A Study on the Rapid Manufacturing for Jewelry Master Patterns (주얼리용 마스터패턴의 쾌속제작에 관한 연구)

  • 주영철;이창훈;송오성
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.110-114
    • /
    • 2002
  • The master pattern manufacturing process is one of the most important processes in jewelry industry because the process takes 20% of total jewelry manufacturing costs. The previous jewelry manufacturing process has many steps of "rough design${\leftrightarro}$ detailed drawing${\leftrightarro}$ wax pattern manufacturing ${\leftrightarro}$ lime soda flask mold manufacturing ${\leftrightarro}$ silver master pattern manufacturing ${\leftrightarro}$ mass production of wax pattern ${\leftrightarro}$ investment casting process ${\leftrightarro}$ final jewelry product." A novel process that reduces processing steps by using a rapid prototyping system (RP) has been suggested. The process is "3D CAD design ${\leftrightarro}$ DuraForm mold manufacturing by RP ${\leftrightarro}$ manufacturing master pattern by low melting alloy ${\leftrightarro}$ mass production of wax pattern ${\leftrightarro}$ investment casting process${\leftrightarro}$ final jewelry product." Molds are made with DuraForm powder, of which melting temperature is 19$0^{\circ}C$, by a selective laster sintering type RP. An alloy of Pb-Sn-Bi-Cd, of which melting temperature is $70^{\circ}C$, is casted in the DuraForm molds. Spheres and rings of diameter 20 mm are made by this process. The dimension deformation rate is less than 2%, and the post processing of the castings is convenient. The casting made by the suggested process can be used as a master pattern of jewelry products.of jewelry products.

  • PDF

Fabrication of PDMS Mold by AFM Based Mechanical TNL Patterning (AFM기반 기계적 TNL 패터닝을 통한 PDMS 몰드제작)

  • Jung, Y.J.;Park, J.W.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.831-836
    • /
    • 2013
  • This study demonstrates the process of fabricating patterns using tribonanolithography (TNL),with laboratory-made micro polycrystalline diamond (PCD) tools that are attached to an atomic force microscope (AFM). The various patterns are easily fabricated using mechanical scratching, under various normal loads, using the PCD tool on single crystal silicon, which is the master mold for replication in this study. Then, polydimethylsiloxane (PDMS) replica molds are fabricated using precise pattern transfer processes. The transferred patterns show high dimensional accuracy as compared with those of TNL-processed silicon micro molds. TNL can reduce the need for high cost and complicated apparatuses required for conventional lithography methods. TNL shows great potential in that it allows for the rapid fabrication of duplicated patterns through simple mechanical micromachining on brittle sample surfaces.

Development of the Automatic Fine Polishing System (경면 다듬질을 위한 자동화 장치 개발)

  • 박균명;장진희;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.389-394
    • /
    • 1993
  • Die making process is classified into design,manufacturing,polishing,assembly, and performance test. Die polishing is not a machining process by cutting edge of tool, but it is finishing by relative cutting movement under the surface contact between grinding particles and workpiece, and this process comprised 30~40% of total manufacturing hours. However, die polishing process is still performed by the skilled workers. Now a days, it is very difficult to secure skilled workers due to the hardworking environment and this situation will be getting worse in the future which has great difficulty of dies and molds industries.This process has the common problem on the elimination of tedious manual polishing among the tool making industries. Therefore this study is aimed at the development of an automatic polishing attachment which could be attached onthe spindle of CNC machine tool and controlled by the NC program data created by CAD/CAM system. As a result, this study will contribute the realization of automatic fine polishing process and improvement of quality level of dies and molds.

  • PDF

Influence of Nickel Alloy Weld on the Mold Surface Cracks (니켈 합금 용접이 금형 표면의 균열 발생에 미치는 영향)

  • Jeong, Hyae-Dong;Lee, Ji-Hoon;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.478-483
    • /
    • 2011
  • Cast mold has low wear-resistance comparing with other alloyed molds which result in lower production rate and high cost of products. Recently, various weld methods are being applied to increase the wear-resistance of molds and to extend mold life. Among them, nickel alloy weld process increases the hardness irrelevant to its machinability and creates very uniform structures. In addition, it causes better wear-resistance and reduces shrinkage defects. In this paper, we analyze the mold surface cracks welded by nickel alloy and propose the methods to improve the mold surface and its wear-resistance. It has been found that nickel alloy weld does not affect the inside crack of mold but has an influence on the surface crack seriously. Results show that the start and growth of fatigue cracks have been delayed about 3 times and reduced approximately 75%, respectively, and the mold surface cracks are decreased about 5.7 times.

Development of the Diode Laser Heat Treatment Robot System Based on OLP Simulator (OLP 시뮬레이터 기반의 다이오드 레이저 열처리 로봇시스템 개발)

  • Park, Kee-Jin;Yoon, Sung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.8-14
    • /
    • 2015
  • Heat treatment for car body molds is mainly a manual process performed by a worker. The performance of this process is affected by workers' skill level, and has limitation in maintaining uniform product quality. In this study, we developed a diode laser heat treatment robot system that implements an OLP type simulator to overcome the limitation of manual process, and to improve and stabilize the quality level. In addition, we verified the efficiency of the robot system and mechanism stability from the early stage through design verification and simulated analysis in the development stage. In addition, we carried out a field test to study the way to establish optimized D/B for diode laser heat treatment criteria for car body molds, such as heat treatment speed, interval, etc. via site experiment.

A Study on Defects Due to Air Bubbles in the PU-Coating Gloves and Enhanced Molds to Reduce the Defects (폴리우레탄 코팅 장갑의 기포로 인한 불량 현상에 대한 고찰과 개선)

  • Kim, Yong-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.55-62
    • /
    • 2007
  • With the developments in knitting, manufacturing, and polymers, coated gloves have been evolved in a way to maximize occupational safety and functionality. In this paper, we have considered the PU-coating process for the glove knitted by Dyneema to reduce the occurrence of the defects due to air bubble. This paper classifies the types of defect due to air bubble and traces their forming mechanisms. The air between coating layer of glove and mold's surface forms the defects if it is not evacuated fully in the process of submerging into water. The defects can be suppressed or avoided by forming air-evacuating path on the surface of the molds.

Development of Polishing Machine for Free Form Surface Die (자유 곡면 금형 연마기 개발)

  • 박정훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.417-422
    • /
    • 2000
  • In the process of die manufacturing, according to increasing demand of die and molds, the efficient machining of dies and molds has been increased. However, while the cutting process has been automated by the progress of CNC(computer numerical control) and CAD/CAM, the polishing process still depends on the experienced knowledge of an expert. Also, even when workers are skilled in polishing dies. it takes much time to obtain the required roughness and smoothness on the surface of a die. Moreover, many workers gradually avoid doing polishing work because of the poor working conditions caused by dust and noise. Therefore, to improve productivity and to solve the potential shortage of skilled workers, a user-friendly automatic polishing system was developed in this research. The developed polishing system with five degrees of freedom is able to keep the polishing tool normal to the die surface during operation and is able to maintain a pressure constantly by the developed pneumatic system. Also, to evaluate polishing performance of the developend system and find the polishing conditions, the various polishing experiments were carried out.

  • PDF

Trends of Flat Mold Machining Technology with Micro Pattern (미세패턴 평판 금형가공 기술동향)

  • Je, Tae-Jin;Choi, Doo-Sun;Jeon, Eun-Chae;Park, Eun-Suk;Choi, Hwan-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Recent ultra-precision machining systems have nano-scale resolution, and can machine various shapes of complex structures using five-axis driven modules. These systems are also multi-functional, which can perform various processes such as planing, milling, turning et al. in one system. Micro machining technology using these systems is being developed for machining fine patterns, hybrid patterns and high aspect-ratio patterns on large-area molds with high productivity. These technology is and will be applied continuously to the fields of optics, display, energy, bio, communications and et al. Domestic and foreign trends of micro machining technologies for flat molds were investigated in this study. Especially, we focused on the types and the characteristics of ultra-precision machining systems and application fields of micro patterns machined by the machining system.

A Case Study of Process Monitoring System for Mold Production with Ubiquitous Technology (유비쿼터스 기술 기반의 금형제조 공정관리 시스템 사례 연구)

  • Choi, Young;Kim, Jung-Joon;Yang, Sang-Wook;Park, Jin-Pyo;Kwon, Ki-Eak
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.168-175
    • /
    • 2009
  • A recent advance in RFID technology is one of the major technological drives in reducing cost in logistics, distribution and even in the manufacturing sector. However, currently the technology is practically accepted only in the area of logistics and inventory control. The characteristic of these application areas is that the technology is used in the controllable environment. In this paper, we discuss a case study of using active and passive RFID technologies to automatically gather process information in the mold factory. Active RFID tags are attached on the main parts of molds and their positions in the floor are tracked with the routers. We also discuss on the idea of using mobile device with RFID reader to inquire information for molds on the spot in the factory floor. The inquirable information includes 3D design data and basic mold data. The paper shows implementation results with hardware configuration for the testbed.

A Method for Generation of Grinding Map based on Automatic Mold Measurement (금형 자동측정에 의한 사상맵 생성)

  • Jeoung, Nam-Yeoung;Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.248-255
    • /
    • 2018
  • Ensuring the quality of molds is one of the major issues in mass production. In general, securing the quality of the molds is achieved by repeating grinding and die spotting after machining the molds based on engineer's decision. However, this heuristic method is affected by the engineer's skill and working environment. Therefore, a lot of time and resources are needed in order to ensure quality. In this study, ensuring the quality of molds using grinding map which is generated using automatic measurement is proposed. An automatic measuring system based on CMM (Coordinate Measuring Machine) is developed for measuring the molds. This system generates the measurement path automatically using the 3D CAD model of products. CAD (ComputerAided-Design), CAM (Computer-Aided-Manufacturing), and CAQ (Computer-Aided-Quality) technology is integrated using DMIS (Dimensional Measuring Interface Standard) format in the automatic measuring system. After measuring the molds, a grinding map is generated using the gap between the CAD model and measured values of mold. The grinding map displays the machining tendency and the required amount of grinding with values on a 3D map. Therefore, the quality of molds can be ensured with exactness and quickness based on the grinding map. This study shows that integrating the planning, measuring, and analyzing based on computer technology can solve the problem of quality assurance of mold using the proposed method, therefore the productivity can be increased.