• Title/Summary/Keyword: mantle convection

Search Result 13, Processing Time 0.019 seconds

Various vertical motions and mechanisms in intraplate settings (판 내부 융기 운동의 다양한 스케일과 매커니즘)

  • SHIN, Jaeryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2012
  • The Earth's surface deforms vertically in response to a variety of sources relating to lithospheric and sub-lithospheric processes, and distinguishing the continental mechanisms for vertical motions of the lithosphere remains a fundamental challenge in geosciences. A key prerequisite to the challenge is documentation of the temporal and spatial pattern of vertical motions in different tectonic settings. This study is aimed at elucidating the geodynamic factors that can contribute to vertical motions of the Earth's surface in intraplate continental settings including the Neogene uplift in the Korean peninsula based on numerous recent achievements in relevant fields. Ultimately, deciphering the interplay between the Earth's surface and the Earth's interior processes leads us to the notion of "the importance of geomorphic landscape" as a prism to view the dynamics of the Earth's inside.

Rendezvous Mission to Apophis: IV. Investigation of the internal structure - A lesson from an analogical asteroid Itokawa

  • Jin, Sunho;Kim, Yaeji;Jo, Hangbin;Yang, Hongu;Kwon, Yuna G.;Ishiguro, Masateru;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.58.1-59
    • /
    • 2021
  • Exploration of asteroids' internal structure is essential for understanding their evolutional history. It also provides a fundamental information about the history of coalescence and collision of the solar system. Among several models of the internal structures, the rubble-pile model, confirmed by the near-Earth asteroid (25143) Itokawa by Hayabusa mission [1], is now widely regarded as the most common to asteroids with size ranging from 200 m to 10 km [2]. On the contrary, monolithic and core-mantle structures are also possible for small asteroids [3]. It is, however, still challenging to look through the interior of a target object using remote-sensing devices. In this presentation, we introduce our ongoing research conducted at Seoul National and propose an idea to infer the internal structure of Apophis using available instruments. Itokawa's research provides an important benchmark for Apophis exploration because both asteroids have similar size and composition [4][5]. We have conducted research on Itokawa's evolution in terms of collision and space weathering. Space weathering is the surface alteration process caused by solar wind implantation and micrometeorite bombardment [6]. Meanwhile, resurfacing via a collision acts as a counter-process of space weathering by exposing fresh materials under the matured layer and lower the overall degree of space weathering. Therefore, the balance of these two processes determine the space weathering degrees of the asteroid. We focus on the impact evidence on the boulder surface and found that space weathering progresses in only 100-10,000 years and modifies the surface optical properties (Jin & Ishiguro, KAS 2020 Fall Meeting). It is important to note that the timescale is significantly shorter than the Itokawa's age, suggesting that the asteroid can be totally processed by space weathering. Accordingly, our result triggers a further discussion about why Itokawa indicates a moderately fresh spectrum (Sq-type denotes less matured than S-type). For example, Itokawa's smooth terrains show a weaker degree of space weathering than other S-type asteroids [7]. We conjecture that the global seismic shaking caused by collisions with >1 mm-sized interplanetary dust particles induces granular convection, which hinders the progression of space weathering [8]. Note that the efficiency of seismic wave propagation is strongly dependent on the internal structure of the asteroid. Finally, we consider possible approaches to investigate Apophis's internal structure. The first idea is studying the space weathering age, as conducted for Itokawa. If Apophis indicates a younger age, the internal structure would have more voids [9]. In addition, the 2029 close encounter with Earth provides a rare natural opportunity to witness the contrast between before and after the event. If the asteroid exhibits a slight change in shape and space weathering degree, one can determine the physical structure of the internal materials (e.g., rubble-pile monolithic, thick or thin regolith layer, the cohesion of the materials). We will also consider a possible science using a seismometer.

  • PDF

An Understanding the Opening Style of the West Philippine Basin Through Multibeam High-Resolution Bathymetry (고해상도 다중빔음향측심 지형자료 분석을 통한 서필리핀분지의 진화 연구)

  • Hanjin Choe;Hyeonuk Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.643-654
    • /
    • 2023
  • The West Philippine Basin, an oceanic basin half the size of the Philippine Sea Plate, lies in the western part of the plate and south of the Korean Peninsula on the Eurasian Plate. It subducts beneath the Eurasian Plate and the Philippine Islands bordering the Ryukyu Trench and the Philippine Trench with 25-50% of this basin already consumed. However, the history of the opening of the basin's southern region has been a topic of debate. The non-transform discontinuity formed during the seafloor spreading is similar to the transform fault boundaries normally perpendicular to mid-ocean ridge axes; however, it was created irregularly due to ridge propagations caused by variations of mantle convection attributable to magma supply changes. By analyzing high-resolution multi-beam echo-sounding data, we confirmed that the non-transform discontinuity due to the propagating rift evolved in the entire basin and that the abyssal hill strike direction changed from E-W to NNW-SSE from the fossil spreading center. In the early stage of basin extension, the Amami-Sankaku Basin was rotated 90 degrees clockwise from its current orientation, and it bordered the Palau Basin along the Mindanao Fracture Zone. The Amami-Sankaku Basin separated from the Palau Basin while the spreading of the West Philippine Basin began with a counter-clockwise rotation. This indicates that the non-transform discontinuities formed by a sudden change in magma supply due to the drift of the Philippine Sea Plate and simultaneously with the rapid changes in the spreading direction from ENE-WSW to N-S. The Palau Basin was considered to be the sub-south of the West Philippine Basin, but recent studies have shown that it extends into an independent system. Evidence from sediment layers and crustal thickness hints at the possibility of its existence before the West Philippine Basin opened, although its evolution continues to be debated. We performed a combined analysis using high-resolution multi-beam bathymetry and satellite gravity data to uncover new insights into the evolution of the West Philippine Basin. This information illuminates the complex plate interactions and provides a crucial contribution toward understanding the opening history of the basin and the Philippine Sea Plate.